Skip to main content
Log in

Internal strain energy and the strength of brittle materials

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The theory of Clarke for the formation of grain boundary cracks in anisotropic polycrystalline materials, is re-examined in the light of recent experimental data. The theory predicts correctly the conditions for the formation of grain boundary cracks of length similar to a grain dimension. However, the theory cannot be used to explain the experimentally observed strength/grain size and strength/irradiation dose relationships, for example for BeO. The theory supposes that the process controlling catastrophic fracture is the growth of a crack from a grain boundary pore with an energy absorption rate corresponding to the grain boundary surface energy of ∼103 erg/cm2. In practice, the process controlling catastrophic fracture is the subsequent growth of a crack from a grain dimension, with a higher energy absorption rate corresponding to an effective surface energy of ∼104 erg/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. Baker, P. J. Baldock, andF. J. P. Clarke,J. Nucl. Matls. 14 (1964) 203.

    Google Scholar 

  2. F. J. P. Clarke,Prog. Nucl. Energy 5 (1963) 221.

    Google Scholar 

  3. Idem, Acta Met. 12 (1964) 139.

    Google Scholar 

  4. Item, J. Nucl. Matls. 11 (1964) 117.

    Google Scholar 

  5. F. J. P. Clarke, R. S. Wilks, andD. H. Bowen,ibid 14 (1964) 205.

    Google Scholar 

  6. F. J. P. Clarke andR. S. Wilks, Proc. Conf. Nuclear Applications of Non-Fissionable Ceramics, edited by A. Boltax and J. H. Handwerk (American Nuclear Soc., 1966) p. 57.

  7. H. J. Woolaston andR. S. Wilks,J. Nucl. Matls. 11 (1964) 265.

    Google Scholar 

  8. G. L. Hanna, G. T. Stevens, andB. S. Hickman, AAEC/E 127 (1964).

  9. C. G. Collins,J. Nucl. Matls. 14 (1964) 69.

    Google Scholar 

  10. J. P. Roberts,Proc. Phys. Soc. 62B (1949) 248.

    Google Scholar 

  11. J. F. Quirk, N. B. Mosley, andW. H. Duckworth,J. Amer. Ceram. Soc. 40 (1957) 416.

    Google Scholar 

  12. G. C. Bentle andR. M. Kniefel,ibid. 48 (1965) 570.

    Google Scholar 

  13. R. E. Fryxell andB. A. Chandler,ibid. 47 (1964) 283.

    Google Scholar 

  14. J. S. O'Neill, N. A. Hill, andD. T. Livey,Proc. Brit. Ceram. Soc. 6 (1966) 95.

    Google Scholar 

  15. F. J. P. Clarke, H. G. Tattersall, andG. Tappin,ibid p. 163.

    Google Scholar 

  16. H. G. Tattersall andG. Tappin,J. Matls. Sci. 1 (1966) 296.

    Google Scholar 

  17. R. W. Davidge andG. Tappin,ibid 3 (1968) 165.

    Google Scholar 

  18. R. W. Davidge andF. J. P. Clarke,Bull. Soc. Fran. Ceram. 72 (1966) 61.

    Google Scholar 

  19. S. C. Carniglia,J. Amer. Ceram. Soc. 48 (1965) 580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidge, R.W., Tappin, G. Internal strain energy and the strength of brittle materials. J Mater Sci 3, 297–301 (1968). https://doi.org/10.1007/BF00741965

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00741965

Keywords

Navigation