Skip to main content
Log in

The thermodynamic efficiency of the Ca2+-Mg2+-ATPase is one hundred percent

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The thermodynamic efficiency of the Ca2+-Mg2+-ATPase of skeletal sarcoplasmic reticulum has been evaluated by comparing the Ca2+ gradient established with the ATP/(ADP*Pi) ratio. The evaluation was made at an external Ca2+ level (4.7 × 10−8 M) which is below theK m value of 7 × 10−8 M. The Mg-ATP and phosphate concentrations were held constant (0.1 mM) and the ADP concentration was varied. Maximal uptake to an internal free Ca2+ concentration of 17 mM was observed at infinite ATP/(ADP*Pi) ratio (absence of ADP). This corresponds to a [Ca2+]i/[Ca2+]0 gradient of 3.6 × 105. A Ca2+ gradient one-half as large was observed at an ATP/(ADP*Pi) ratio of 3.5 × 103 M−1. The square of the Ca2+ gradient is shown to be proportional to the ATP/(ADP*Pi) ratio, for finite values of the latter. The proportionality constant is identical to the equilibrium constant for hydrolysis of ATP (9.02 × 106 M) under these conditions (0.1 mM Mg2+, 30°C). The intrinsic thermodynamic efficiency of the pump is shown to be 100%, with a maximal uncertainty of 3%. The efficiency is lower under less optimal conditions, when the pump is inhibited and passive leak processes compete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberty, R. A. (1968).J. Biol. Chem. 243 1337–1348.

    Google Scholar 

  • Chiu, V. C. K., and Haynes, D. H. (1980).J. Membr. Biol. 56 219–239.

    Google Scholar 

  • Chiu, V. C. K., Mouring, D., Watson, B. W., and Haynes, D. H. (1980).J. Membr. Biol. 56 121–132.

    Google Scholar 

  • DeMeis, L., and Vianna, A. L. (1979).Annu. Rev. Biochem. 48 275–292.

    Google Scholar 

  • Dixon, D., Corbett, A., and Haynes, D. H. (1982).J. Bioenerg. Biomembr. 14 87–96.

    Google Scholar 

  • Froehlich, J. P., and Taylor, E. W. (1975).J. Biol. Chem. 250 2013–2021.

    Google Scholar 

  • Froehlich, J. P., and Taylor, E. W. (1976).J. Biol. Chem. 251 2307–2315.

    Google Scholar 

  • Guynn, R. W., and Veech, R. L. (1973).J. Biol. Chem. 248 6966–6972.

    Google Scholar 

  • Hasselbach, W., and Makinose, M. (1963).Biochem Z. 339 94–111.

    Google Scholar 

  • Hasselbach, W. (1978).Biochim. Biophs. Acta 463 23–53.

    Google Scholar 

  • Hasselbach, W. (1979).Top. Curr. Chem. 78 1–56.

    Google Scholar 

  • Haynes, D. H., and Mandveno, A. (1983).J Membr. Biol. 74 25–40.

    Google Scholar 

  • Inesi, G. (1972).Annu. Rev. Biophys. Bioeng. 1 191–210.

    Google Scholar 

  • Kanazawa, T., Yamada, S., Yamamoto, T., and Tonomura, Y. (1971).J. Biochem. 70 95–123.

    Google Scholar 

  • MacLennan, D. H., and Holland, P. C. (1975).Annu. Rev. Biophys. Bioeng. 4 377–404.

    Google Scholar 

  • Martell, A. E., and Smith, R. M. (1974).Critical Stability Constants, Vol. F: Amino Acids, Plenum Press.

  • Martonosi, A. N. (1980).Fed. Proc. 39 2401–2402.

    Google Scholar 

  • Phillips, R. C., George, P., and Rutman, R. J. (1969).J. Biol. Chem. 244 3330–3342.

    Google Scholar 

  • Rosing, J., and Slater, E. C. (1972).Biochim. Biophys. Acta 267 275–290.

    Google Scholar 

  • Shikama, K., and Nakamura, K. (1973).Arch. Biochem. Biophys. 157 457–463.

    Google Scholar 

  • Tada, M., Yamamoto, T., and Tonomura, Y. (1978).Physiol. Rev. 58 1–79.

    Google Scholar 

  • Tanford, C. (1981).J. Gen. Physiol. 77 223–229.

    Google Scholar 

  • Veech, R. L., Lawson, J. W. R., Cornell, N. W., and Krebs, H. A. (1979).J. Biol. Chem. 254 6538–6547.

    Google Scholar 

  • Weber, A., Herz, R., and Reiss, I. (1966).Biochem. Z. 345 329–369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Philip George, University of Pennsylvania, whose instruction, research, and example made this contribution possible.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trevorrow, K., Haynes, D.H. The thermodynamic efficiency of the Ca2+-Mg2+-ATPase is one hundred percent. J Bioenerg Biomembr 16, 53–59 (1984). https://doi.org/10.1007/BF00744145

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00744145

Key Words

Navigation