Skip to main content
Log in

Killing vector fields and the Einstein-Maxwell field equations in general relativity

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A number of theorems concerning non-null electrovac spacetimes, that is space-times whose metric satisfies the source-free Einstein-Maxwell equations for some non-null bivector Fij, are presented. Firstly, we suppose that the metric is invariant under a one-parameter group of isornetries with Killing vector field ξ. It is proved that the electromagnetic field tensor Fij is invariant under the group, in the sense that its Lie derivative with respect to ξ vanishes, if and only if the gradient αij of the complexion scalar is orthogonal to ξ. It is is also proved that if in addition ξ is hypersurface orthogonal, it is necessarily parallel to α,i. These results are used to generalize theorems of Perjes and Majumdar concerning static electrovac space-times. Secondly, we suppose that the metric is invariant under a two-parameter othogonally transitive Abelian group of isometries. It is proved that in this case Fij is necessarily invariant under the group. The above results can be used to simplify many derivations of exact solutions of the Einstein-Maxwell equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Misner, C.W. and Wheeler, J.A. (1957). Classical Physics as Geometry,Ann. Phys.,2, 525–603; (reprinted in: Wheeler, J.A. (1962).Geometrodynamics, (Academic Press, New York).

    Google Scholar 

  2. Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973).Gravitation, (W.H. Freeman and Company, San Francisco).

    Google Scholar 

  3. Landau, L.D. and Lifshitz, E.M. (1962).The Classical Theory of Fields, (transl. Hamermesh, M.), (Addison-Wesley, Reading, Massachusetts).

    Google Scholar 

  4. Veblen, O. (1927).Invariants of Quadratic Differential Forms, (Cambridge Tracts, No.24), (Cambridge University Press, Cambridge).

    Google Scholar 

  5. Israel, W. (1968). Event Horizons in Static Electrovac SpaceTimes,Commun. Math. Phys.,8, 245–260.

    Google Scholar 

  6. Müller zum Hagen, H., Robinson, D.C., Seifert, H.J. (1974).Gen. Rel. Grav.,5, 61–72.

    Google Scholar 

  7. Carter, B. (1973). Black Hole Equilibrium States, inBlack Holes., 1972 Les Bouches Lectures, (Gordon and Breach, New York), pp. 57–214.

    Google Scholar 

  8. Reissner, K. (1916). Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie,Ann. Phys. (Leipz.),50, 106–120.

    Google Scholar 

  9. Nordström, L. (1918). On the Energy of the Gravitational Field in Einstein's Theory,Proc. Amst. Acad.,20, 1238–1245.

    Google Scholar 

  10. Jeffery, G.B. (1921). The Field of an Electron on Einstein's Theory of Gravitation,Proc. Roy. Soc.,A99, 123–134.

    Google Scholar 

  11. Hoffman, B. (1932). On the Spherically Symmetric Field in General Relativity,Quart. J. Math. Oxf.,3, 226–237.

    Google Scholar 

  12. Bertotti, B. (1959). Uniform Electromagnetic Field in the Theory of General Relativity,Phys. Rev.,116, 1331–1333.

    Google Scholar 

  13. Robinson, I. (1959). A Solution of the Maxwell-Einstein Equations,Bull. Acad. Sci. Polon., Cl. III,7, 351.

    Google Scholar 

  14. Das, A. (1960). Birkhoff's Theorem for Electromagnetic Fields in General Relativity,Prog. Theor. Phys.,24, 915–916.

    Google Scholar 

  15. Hoffmann, B. (1962). On the Extension of Birkhoff's Theorem to the Case in which an Electromagnetic Field is Present, inRecent Developments in General Relativity, (Pergamon Press, New York), pp. 279–282.

    Google Scholar 

  16. Weyl, H. (1917). Zur Gravitationstheorie,Ann. d. Phys.,54, 117–145.

    Google Scholar 

  17. Curzon, H.E.J. (1924). Cylindrical Solutions of Einstein's Gravitation Equations,Proc. Lond. Math. Soc.,23, 477–480.

    Google Scholar 

  18. Mukherji, B.C. (1938). Two Cases of Exact Gravitational Fields with Axial Symmetry,Bull. Calcutta Math. Soc.,30, 95–104.

    Google Scholar 

  19. Bonnor, W.B. (1953). Certain Exact Solutions of the Equations of General Relativity with an Electrostatic Field,Proc. Phys. Soc.,66, 145–152.

    Google Scholar 

  20. Tauber, G.E. (1957). The Gravitational Fields of Electric and Magnetic Dipoles,Can. J. Phys.,35, 477–482.

    Google Scholar 

  21. Bonnor, W.B. (1960). The Field of an Electric Current in General Relativity,Proc. Phys. Soc.,76, 891–899.

    Google Scholar 

  22. Bonnor, W.B. (1961). Exact Solutions of the Einstein-Maxwell Equations,Z. Phys.,161, 439–444.

    Google Scholar 

  23. Datta, B.K. (1961). Static Electromagnetic Fields in General Relativity, Part III,Ann. Phys.,15, 403–410.

    Google Scholar 

  24. Melvin, M.A. (1964). Pure Magnetic and Electric Geons,Phys. Rev. Lett.,8, 65–68.

    Google Scholar 

  25. Som, M.M. (1964). Cylindrically Symmetric Radial Electrostatic Fields,Proc. Phys. Soc.,83, 328–330.

    Google Scholar 

  26. Ghosh, R. and SenGupta, R. (1965). The Gravitation of a Cylindrically Symmetric Magnetic Field,Nuovo Cim.,38, 1579–1587.

    Google Scholar 

  27. Bonnor, W.B. (1966). An Exact Solution of the Einstein-Maxwell Equations Referring to an Magnetic Dipole,Z. Phys.,190, 444–445.

    Google Scholar 

  28. Perjes, Z. (1968). A Method for Constructing Certain Axially Symmetric Einstein-Maxwell Fields,Nuovo Cim.,B55, 600–603.

    Google Scholar 

  29. Roy, S.R. and Kapoor, K. (1969). A Finite Axially Symmetric Electrostatic Model in the General Theory of Relativity,Prog. Math.,3, 171–181.

    Google Scholar 

  30. Gautreau, R. and Hoffman, R.B. (1970). Class of Exact Solutions of the Einstein-Maxwell Equations,Phys. Rev.,D2, 271–272.

    Google Scholar 

  31. Misra, R.M. and Pandey, B. (1971). A New Class of Electromagnetic Fields,Curr. Sci.,40, 100–101.

    Google Scholar 

  32. Gautreau, R., Hoffman, R.B. and Armenti, A. (1972). Static Multiparticle Systems in General Relativity,Nuovo Cim.,B7, 71–98.

    Google Scholar 

  33. Misra, R.M. and Pandey, D.M. (1973). Class of Electromagnetic Fields,J. Phys.,A6, 924–927.

    Google Scholar 

  34. Misra, R.M., Pandey, D.B., Srivastava, D.C. and Tripathi, S.N. (1973). New Class of Solutions of the Einstein-Maxwell Equations,Phys. Rev.,D7, 1587–1589.

    Google Scholar 

  35. Voorhees, B.H. (1973). Some Minimally Charged Weyl Space-Times,Nuovo Cim.,B16, 240–250.

    Google Scholar 

  36. Rao, A.V.G. (1974). On the Generation of Electrovac Solutions from Vacuum Solutions in General Relativity,J. Phys.,A7, 597–599.

    Google Scholar 

  37. Misra, M. and Radhakrishna, L. (1962). Some Electromagnetic Fields of Cylindrical Symmetry,Proc. Nat. Inst. Sci. India,A28, 632–645.

    Google Scholar 

  38. Misra, M. (1962). A Non-Singular Electromagnetic Field,Proc. Camb. Phil. Soc.,58, 711–712.

    Google Scholar 

  39. Witten, L. (1962). A Geometric Theory of the Electromagnetic and Gravitational Fields, inGravitation: An Introduction to Current Research, (ed. Witten, L.), (Wiley, New York).

    Google Scholar 

  40. Melvin, M.A. (1965). Dynamics of Cylindrical Electromagnetic Universes,Phys. Rev.,B139, 225–243.

    Google Scholar 

  41. Singh, K.P., Radhakrishna, L. and Sharan, R. (1965). Electro-Magnetic Fields and Cylindrical Symmetry,Ann. Phys.,32, 46–68.

    Google Scholar 

  42. Lal, K.B. (1969). Cylindrical Wave Solutions of Field Equations of General Relativity,Tensor,20, 45–52.

    Google Scholar 

  43. Safko, J.L. (1970). The Nature of the General Relativistic Solution of the Charged Line Mass,Ann. Phys.,58, 322–334.

    Google Scholar 

  44. Ernst, F.J. (1968). New Formulation of the Axially Symmetric Gravitational Field Problem. II,Phys. Rev.,168, 1415–1417.

    Google Scholar 

  45. Perjes, Z. (1968). Some Properties of Cylindrical Electrovac Fields,Acta Phys. Acad. Sci. Hung.,25, 393–400.

    Google Scholar 

  46. Kramer, D. and Neugebauer, G. (1969). Eine exacte stationäre Lösung der Einstein-Maxwell-Gleichungen,Ann. d. Phys.,24, 59–61.

    Google Scholar 

  47. Perjes, Z. (1969). 3-Dimensional ‘Relativity’ for Axisymmetric Stationary Space-Times,Commun. Math. Phys.,12, 275–282.

    Google Scholar 

  48. Bonnor, W.B. and Ward, J.P. (1972). The Field of Charged, Spinning, Magnetic Particles,Commun. Math. Phys.,28, 323–330.

    Google Scholar 

  49. Arbex, H. and Som, M.M. (1973). Stationary Cylindrically Symmetric Electrovac Fields,Nuovo Cim.,B13, 49–54.

    Google Scholar 

  50. Bonnor, W.B. (1973). A Class of Stationary Solutions of the Einstein-Maxwell Equations,Commun. Math. Phys.,34, 77–83.

    Google Scholar 

  51. Esposito, F.P. and Witten, L. (1973). A Five Parameter Exterior Solution of the Einstein-Maxwell Field Equations,Phys. Rev.,D8, 3302–3308.

    Google Scholar 

  52. Ernst, F.J. (1973). Charged Version of Tomimatsu-Sato Spinning-Mass Field,Phys. Rev.,D7, 2520–2521.

    Google Scholar 

  53. Spanos, T.J.T. (1974). Two Charged Spinning Sources in Gravitational Equilibrium,Phys. Rev.,D9, 1633–1634.

    Google Scholar 

  54. Wang, M.Y. (1974). Class of Solutions of Axial-Symmetric Einstein-Maxwell Equations,Phys. Rev.,D9, 1835–1836.

    Google Scholar 

  55. Thorne, K.S. (1965).Geometrodynamics of Cylindrical Systems, (Ph.D. Thesis), (Princeton University), (unpublished).

  56. Majumdar, S.D. (1947). A Class of Exact Solutions of Einstein's Field Equations,Phys. Rev.,72, 390–398.

    Google Scholar 

  57. Papapetrou, A. (1947). A Static Solution of the Equations of the Gravitational Field for an Arbitrary Charge Distribution,Proc. Roy. Ir. Acad.,A51, 191–204.

    Google Scholar 

  58. Bonnor, W.B. (1954). Static Magnetic Fields in General Relativity,Proc. Phys. Soc.,67, 225–232.

    Google Scholar 

  59. Ehlers, J. (1955). Exacte Losungen der Einstein Maxwellschen Feldgleichungen fur statische Felder,Z. Phys.,140, 394–408.

    Google Scholar 

  60. Majumdar, S.D. (1962). Construction of Some Electrostatic Fields in General Relativity,Proc. Phys. Soc.,79, 657–658.

    Google Scholar 

  61. Hartle, J.B. and Hawking, S.W. (1972). Solutions of the Einstein-Maxwell Equations with Many Black Holes.Commun. Math. Phys.,26, 87–101.

    Google Scholar 

  62. Neugebauer, G. and Kramer, D. (1969). Eine Methode zur Konstruktion stationärer Einstein-Maxwell-Felder,Ann. d. Phys.,24, 62–71.

    Google Scholar 

  63. Perjes, Z. (1971). Solutions of the Coupled Einstein-Maxwell Equations Representing the Fields of Spinning Sources,Phys. Rev. Lett.,27, 1668–1670.

    Google Scholar 

  64. Israel, W. and Wilson, G.A. (1972). A Class of Stationary Electromagnetic Vacuum Fields,J. Math. Phys.,13, 865–867.

    Google Scholar 

  65. Israel, W. and Spanos, J.T.J. (1973). Equilibrium of Charged Spinning Masses in General Relativity,Lett. Nuovo Cim.,24, 245–249.

    Google Scholar 

  66. Lukacs, B. and Perjes, Z. (1973). Electrovac Fields with Geodesic Eigenrays,Gen. Rel. Grav.,4, 161–172.

    Google Scholar 

  67. Parker, L., Ruffini, R. and Wilkins, D. (1973). Metric of Two Spinning Charged Sources in Equilibrium,Phys. Rev.,D7, 2874–2879.

    Google Scholar 

  68. Ward, J.P. (1973). Equilibrium of Charged, Spinning, Magnetic Particles,Commun. Math. Phys.,34, 123–130.

    Google Scholar 

  69. Raychaudhuri, A.K. (1960). Static Electromagnetic Fields in General Relativity,Ann. Phys.,11, 501–509.

    Google Scholar 

  70. Datta, B.K. (1961). Static Electromagnetic Fields in General Relativity,Ann. Phys.,12, 295–299.

    Google Scholar 

  71. Brill, D.R. (1964). Electromagnetic Fields in a Homogeneous, Non-isotropic Universe,Phys. Rev.,B133, 845–848.

    Google Scholar 

  72. Datta, B.K. (1965). Homogeneous Non-Static Electromagnetic Fields in General Relativity,Nuovo Cim.,36, 109–114.

    Google Scholar 

  73. Harrison, B.K. (1965). Electromagnetic Solutions of the Field Equations of General Relativity,Phys. Rev.,B138, 488–494.

    Google Scholar 

  74. Misra, M. (1966). Some Exact Solutions of the Field Equations of General Relativity,J. Math. Phys.,7, 155–158.

    Google Scholar 

  75. Datta, B.K. (1967). Non-Static Electromagnetic Fields in General Relativity,Nuovo Cim.,A47, 568–572.

    Google Scholar 

  76. Enss, V. (1967). Konstruktion von Einstein-Maxwell-Feldern aus Einsteinschen Vakuumfeldern,Z. Naturforsch.,22a, 1361–1363.

    Google Scholar 

  77. Bera, K. and Datta, B.K. (1968). Non-Static Electromagnetic Fields in General Relativity: II,J. Phys.,A1, 650–654.

    Google Scholar 

  78. Harrison, B.K. (1968). New Solutions of the Einstein-Maxwell Equations from Old,J. Math. Phys.,9, 1744–1752.

    Google Scholar 

  79. Wilson, S.J. (1968). A Gödel-Type Solution of the Einstein-Maxwell Equation,Can. J. Phys.,46, 2361–2362.

    Google Scholar 

  80. De, N.C. and Datta, B.K. (1971). Non-Static Electromagnetic Field in General Relativity. III,Phys. Rev.,D3, 1280–1283.

    Google Scholar 

  81. Wooley, M.L. (1973). Structure of Groups of Motions Admitted by Einstein-Maxwell Space-Times,Commun. Math. Phys.,31, 75–81.

    Google Scholar 

  82. Rainich, G.Y. (1925). Electrodynamics in General Relativity,Trans. Am. Math. Soc.,27, 106–136.

    Google Scholar 

  83. Witten, L. (1959). Geometry of Gravitation and Electromagnetism,Phys. Rev.,115, 206–214.

    Google Scholar 

  84. Geroch, R.P. (1966). Electromagnetism as an Aspect of Geometry? Already Unified Field Theory—The Null Field Case,Ann. Phys.,36, 147–187.

    Google Scholar 

  85. Yano, K. (1955).Theory of Lie Derivatives and Its Applications, (North Holland Publishing Company, Amsterdam).

    Google Scholar 

  86. Rosen, G. (1962). Symmetries of the Einstein-Maxwell Equations,J. Math. Phys.,3, 313–318.

    Google Scholar 

  87. Geroch, R. (1971). A Method for Generating Solutions of Einstein's Equations,J. Math. Phys.,12, 918–924.

    Google Scholar 

  88. Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A. and Torrence, R. (1965). Metric of a Rotating, Charged Mass,J. Math. Phys.,6, 918–919.

    Google Scholar 

  89. Carter, B. (1968). Global Structure of the Kerr Family of Gravitational Fields,Phys. Rev.,174, 1559–1571.

    Google Scholar 

  90. Geroch, R. (1972). A Method for Generating New Solutions of Einstein's Equations. II,J. Math. Phys.,13, 394–404.

    Google Scholar 

  91. Tariq, N. and Tupper, B.O.J. (1975). A Class of Algebraically General Solutions of the Einstein-Maxwell Equations for Non-Null Electromagnetic Fields,Gen. Rel. Grav.,6, (in press).

  92. Hawking, S.W. and Ellis, G.F.R. (1973).The Large Scale Structure of Space-Time, (Cambridge University Press, Cambridge).

    Google Scholar 

  93. Michalski, H.A. (1974).Killing Vector Fields and the Einstein-Maxwell and Einstein-Weyl Field Equations in General Relativity, (Masters Thesis), (University of Waterloo), (unpublished).

  94. Lewis, T. (1932). Some Special Solutions of the Equations of Axially Symmetric Gravitational Fields,Proc. Roy. Soc.,A136, 176–192.

    Google Scholar 

  95. Kompaneets, A. (1958). Strong Gravitational Waves in Free Space,Sov. Phys. JETP,7, 659–660.

    Google Scholar 

  96. Stachel, J. (1966). Cylindrical Gravitational News,J. Math. Phys.,7, 1321–1331.

    Google Scholar 

  97. Kundt, W. and Trumper, M. (1966). Orthogonal Decomposition of Axi-Symmetric Stationary Space-Times,Z. Phys.,192, 419–422.

    Google Scholar 

  98. Carter, B. (1969). Killing Horizons and Orthogonally Transitive Groups in Space-Time,J. Math. Phys.,10, 70–81.

    Google Scholar 

  99. Safko, J.L. and Witten, L. (1971). Some Properties of Cylindrically Symmetric Einstein-Maxwell Fields,J. Math. Phys.,12, 257–270.

    Google Scholar 

  100. Safko, J.L. and Witter., L. (1972). Models of Static, Cylindrically Symmetric Solutions of the Einstein-Maxwell Field,Phys. Rev.,D5, 293–300.

    Google Scholar 

  101. Kinnersley, W. (1973). Generation of Stationary EinsteinMaxwell Fields,J. Math. Phys.,14, 651–653.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalski, H., Wainwright, J. Killing vector fields and the Einstein-Maxwell field equations in general relativity. Gen Relat Gravit 6, 289–318 (1975). https://doi.org/10.1007/BF00751574

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00751574

Keywords

Navigation