Skip to main content
Log in

Magnetohydrodynamics in a Riemann-Cartan space-time

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

By assuming that Maxwell's electromagnetic field equations are valid in a Riemann-Cartan space-time and by using a set of rules to transform from Riemannian kinematics to Riemann-Cartan kinematics, the kinematic aspects of magnetohydrodynamics in a Riemann-Cartan space-time are examined. If the electric conductivity of the fluid is infinite, then the magnetic field conservation laws still hold, but torsion affects the physical interpretation of the equation for proper charge density. A result, based on the Ricci identity foru a and the first Bianchi identity, and describing differential rotation of a charged fluid in a Riemann space-time, is extended to a Riemann-Cartan space-time. The kinematic role played by torsion in this result is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trautman, A. (1973).Nature Phys. Sci.,242, 7.

    Google Scholar 

  2. Stewart, J., and Hájiček, P. (1973).Nature Phys. Sci.,244, 96.

    Google Scholar 

  3. Kopczynski, W. (1973).Phys. Lett.,43A, 63.

    Google Scholar 

  4. Raychaudhuri, A. K. (1975).Phys. Rev. D,12, 952.

    Google Scholar 

  5. Trautman, A. (1972).Bull Acad. Polon. Sci. Ser. Math. Astron. Phys.,20, 185.

    Google Scholar 

  6. Kerlick, G. D. (1973).Astrophys. J.,185, 631.

    Google Scholar 

  7. Prasanna, A. R. (1975).Phys. Rev. D,11, 2083.

    Google Scholar 

  8. Prasanna, A. R. (1975).Phys. Lett.,54A, 17.

    Google Scholar 

  9. Hehl, W. F., von der Heyde, P., Kerlick, G. D., and Nester, J. M. (1976).Rev. Mod. Phys.,48, 393.

    Google Scholar 

  10. Tsamparlis, M. (1979).Kinematics with Torsion, submitted toJ. Math. Phys.

  11. Hehl, F. W. (1973).Gen. Rel. Grav.,4, 333.

    Google Scholar 

  12. Hehl, F. W. (1974).Gen. Rel. Grav.,5, 491.

    Google Scholar 

  13. Ellis, G. F. R. (1971). InGeneral Relativity and Cosmology, ed. Sachs, R. K., Academic Press, New York, p. 104.

    Google Scholar 

  14. Ellis, G. F. R. (1973). InCargése Lectures in Physics, Vol. 6, ed. Schatzman, E., Gordon and Breach, New York, p. 1.

    Google Scholar 

  15. Adamowicz, A., and Trautman, A. (1975).Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys.,23, 339.

    Google Scholar 

  16. Lovelock, D., and Rund, H. (1975).Tensors, Differential Forms, and Vanational Principles, Wiley-Interscience, New York, Chap. 5.

    Google Scholar 

  17. Lichnerowicz, A. (1967).Relativistic Hydrodynamics and Magnetohydrodynamics, Benjamin, New York, Chap. 4.

    Google Scholar 

  18. Yodzis, P. (1971).Phys. Rev. D,3, 2941.

    Google Scholar 

  19. Ciubotariu, C. D. (1975).J. Phys. A: Math. Gen.,8, 283.

    Google Scholar 

  20. Mason, D. P. (1978).Tensor N. S.,32, 272.

    Google Scholar 

  21. Ferraro, V. C. A. (1937).Mon. Not. R. Astron. Soc.,97, 458.

    Google Scholar 

  22. Tsamparlis, M., and Mason, D. P. (1980). Differential Rotation of an Electrically Conducting Fluid in General Relativity, submitted toGen. Rel. Grav.

  23. Mason, D. P. (1977).Gen. Rel. Grav.,8, 871.

    Google Scholar 

  24. Asgekar, G. G. and Date, T. H. (1977).J. Math. Phys.,18, 738.

    Google Scholar 

  25. Hojman, S., Rosenbaum, M., and Ryan, M. P. (1978).Phys. Rev. D.,17, 3141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, D.P., Tsamparlis, M. Magnetohydrodynamics in a Riemann-Cartan space-time. Gen Relat Gravit 13, 123–134 (1981). https://doi.org/10.1007/BF00756853

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00756853

Keywords

Navigation