Skip to main content
Log in

Proton-linked sugar transport systems in bacteria

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The cell membranes of various bacteria contain proton-linked transport systems ford-xylose,l-arabinose,d-galactose,d-glucose,l-rhamnose,l-fucose, lactose, and melibiose. The melibiose transporter ofE. coli is linked to both Na+ and H+ translocation. The substrate and inhibitor specificities of the monosaccharide transporters are described. By locating, cloning, and sequencing the genes encoding the sugar/H+ transporters inE. coli, the primary sequences of the transport proteins have been deduced. Those for xylose/H+, arabinose/H+, and galactose/H+ transport are homologous to each other. Furthermore, they are just as similar to the primary sequences of the following: glucose transport proteins found in a Cyanobacterium, yeast, alga, rat, mouse, and man; proteins for transport of galactose, lactose, or maltose in species of yeast; and to a developmentally regulated protein of Leishmania for which a function is not yet established. Some of these proteins catalyze facilitated diffusion of the sugar without cation transport. From the alignments of the homologous amino acid sequences, predictions of common structural features can be made: there are likely to be twelve membrane-spanning α-helices, possibly in two groups of six, there is a central hydrophilic region, probably comprised largely of α-helix; the highly conserved amino acid residues (40–50 out of 472–522 total) form discrete patterns or motifs throughout the proteins that are presumably critical for substrate recognition and the molecular mechanism of transport. Some of these features are found also in other transport proteins for citrate, tetracycline, lactose, or melibiose, the primary sequences of which are not similar to each other or to the homologous series of transporters. The glucose/Na+ transporter of rabbit and man is different in primary sequence to all the other sugar transporters characterized, but it is homologous to the proline/Na+ transporter ofE. coli, and there is evidence for its structural similarity to glucose/H+ transporters in Plants.In vivo andin vitro mutagenesis of the lactose/H+ and melibiose/Na+ (H+) transporters ofE. coli has identified individual amino acid residues alterations of which affect sugar and/or cation recognition and parameters of transport. Most of the bacterial transport proteins have been identified and the lactose/H+ transporter has been purified. The directions of future investigations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmann, B. J. (1987). InEscherichia coli and Salmonella typhimurium (Neidhardt, F. C., ed.), ASM, Washington, pp. 807–876.

    Google Scholar 

  • Badia, J., Baldoma, L., Aguilar, J., and Boronat, A. (1989).FEMS Microbiol. Lett. 65, 253–258.

    Google Scholar 

  • Baldwin, S. A., and Henderson, P. J. F. (1989).Annu. Rev. Physiol. 51, 459–471.

    Google Scholar 

  • Baldwin, J. M., Lienhard, G. E., and Baldwin, S. A. (1980).Biochim. Biophys. Acta 599, 699–714.

    Google Scholar 

  • Baldwin, S. A., Baldwin, J. M., and Lienhard, G. E. (1982).Biochemistry 21, 3836–3842.

    Google Scholar 

  • Baly, D. L., and Horuk, R. (1988).Biochim. Biophys. Acta 947, 571–590.

    Google Scholar 

  • Barnett, J. E. G., Holman, G. D., and Munday, K. A. (1973).Biochem. J. 131, 211–231.

    Google Scholar 

  • Bassilana, M., Damiano-Ferano, E., and Leblanc, G. (1985).Biochem. Biophys. Res. Commun. 129, 626–631.

    Google Scholar 

  • Beauclerk, A. D. D., and Smith, A. J. (1978).Eur. J. Biochem. 82, 187–197.

    Google Scholar 

  • Beckwith, J. R., and Zipser, D. (1970).The Lactose Operon, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  • Beyreuther, K., Bieseler, B., Ehring, R., and Muller-Hill, B. (1981). InMethods in Protein Sequence Analysis (Elzina, M., ed.), Humana Press, Clifton, New Jersey, pp. 139–148.

    Google Scholar 

  • Birnbaum, M. J. (1989).Cell 57, 305–315.

    Google Scholar 

  • Birnbaum, M. J., Haspel, H. C., and Rosen, O. M. (1986).Proc. Natl. Acad Sci. U.S.A. 83, 5784–5788.

    Google Scholar 

  • Bloch, R. (1974).J. Biol. Chem. 249, 1814–1822.

    Google Scholar 

  • Botfield, M. C., and Wilson, T. H. (1988).J. Biol. Chem. 263, 12909–12915.

    Google Scholar 

  • Botfield, M. C., Wilson, D. M., and Wilson, T. H. (1990).Res. Microbiol. 141, 328–331.

    Google Scholar 

  • Bradley, S. A., Tinsley, C. R., Muiry, J. A. R., and Henderson, P. J. F. (1987).Biochem. J. 248, 495–500.

    Google Scholar 

  • Bremer, E., Silhavy, T. J., Weisemann, J. M., and Weinstock, G. M. (1984).J. Bacteriol. 158, 1084–1093.

    Google Scholar 

  • Brooker, R. J. (1990).Res. Microbiol. 141, 309–315.

    Google Scholar 

  • Brooker, R. J., and Wilson, T. H. (1985).Proc. Natl. Acad. Sci. USA 82, 3959–3963.

    Google Scholar 

  • Broome-Smith, J. K., and Spratt, B. G. (1986).Gene 49, 341–349.

    Google Scholar 

  • Buchel, D. E., Gronenborn, B., and Muller-Hill, B. (1980).Nature (London)283, 541–545.

    Google Scholar 

  • Buttin (1968).Adv. Enzymol. Relat. Areas Mol. Biol. 30, 81–137.

    Google Scholar 

  • Buvinger, W. E., and Riley, M. (1985).J. Bacteriol. 163, 850–857.

    Google Scholar 

  • Cairns, M. T., Elliot, D. A., Scudder, P. R., and Baldwin, S. A. (1984).Biochem. J. 221, 179–188.

    Google Scholar 

  • Cairns, M. T., Alvarez, J., Panico, M., Gibbs, A. F., Morris, H. R., Chapman, D., and Baldwin, S. A. (1987).Biochim. Biophys. Acta 905, 295–310.

    Google Scholar 

  • Cairns, B. R., Collard, M. W., and Landfear, S. M. (1989a).Proc. Natl. Acad. Sci. USA 86, 7682–7686.

    Google Scholar 

  • Cairns, M. T., Smith, G., Henderson, P. J. F., and Baldwin, S. A. (1989b).Biochem. Soc. Trans. 17, 552–553.

    Google Scholar 

  • Carrasco, N., Herzlinger, D., Danho, W., and Kaback, H. R. (1986).Methods Enzymol. 125, 453–467.

    Google Scholar 

  • Carter, J. R., Fox, C. F., and Kennedy, E. P. (1968).Proc. Natl. Acad. Sci. USA 60, 725–732.

    Google Scholar 

  • Carter-Su, C., Pessin, J. E., Mora, R., Gitomer, W., and Czech, M. P. (1982).J. Biol. Chem. 257, 5419–5425.

    Google Scholar 

  • Celenza, J. L., Marshall-Carlson, L., and Carlson, M. (1988).Proc. Natl. Acad. Sci. USA 85, 2130–2134.

    Google Scholar 

  • Chang, Y.-D., and Dickson, R. C. (1988).J. Biol. Chem. 263, 16696–16703.

    Google Scholar 

  • Charalambous, B. M., Maiden, M. C. J., McDonald, T. P., Cunningham, I. J., and Henderson, P. J. F. (1989).Biochem. Soc. Trans. 17, 441–444.

    Google Scholar 

  • Ciaraldi, T. P., Horuk, R., and Matthaei, S. (1986).Biochem. J. 240, 115–123.

    Google Scholar 

  • Cleland, W. W. (1963).Biochim. Biophys. Acta 67, 104–137.

    Google Scholar 

  • Cleland, W. W. (1979).Methods Enzymol. 63, 103–138.

    Google Scholar 

  • Cooper, R. A. (1986). InCarbohydrate Metabolism in Cultured Cells (Morgan, M. J., ed.), Plenum Press, London, pp. 461–491.

    Google Scholar 

  • Cornish-Bowden, A. (1979).Fundamentals of Enzyme Kinetics, Butterworths, London.

    Google Scholar 

  • Daie, J. (1989).Plant Mol. Biol. Rep. 7, 106–115.

    Google Scholar 

  • Damiano-Forano, E., Bassilana, M., and Leblanc, G. (1986).J. Biol. Chem. 261, 6893–6899.

    Google Scholar 

  • Daruwalla, K. R., Paxton, A. T., and Henderson, P. J. F. (1981).Biochem. J. 200, 611–627.

    Google Scholar 

  • Davies, A., Meeran, K., Cairns, M. T., and Baldwin, S. A. (1987).J. Biol. Chem. 262, 9347–9352.

    Google Scholar 

  • Davis, E. O. (1986). Ph.D. thesis, University of Cambridge.

  • Davis, E. O., and Henderson, P. J. F. (1987).J. Biol. Chem. 262, 13928–13932.

    Google Scholar 

  • Davis, E. O., Jones-Mortimer, M. C., and Henderson, P. J. F. (1984).J. Biol. Chem. 259, 1520–1525.

    Google Scholar 

  • Deves, R., and Krupka, R. M. (1978).Biochim. Biophys. Acta 510, 339–348.

    Google Scholar 

  • Deziel, M., Pegg, W., Mack, E., Rothstein, A., and Klip, A. (1984).Biochim. Biophys. Acta 772, 403–406.

    Google Scholar 

  • Diesenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1985).Nature (London)318, 618–624.

    Google Scholar 

  • Doolittle, R. F. (1981).Science 214, 149–159.

    Google Scholar 

  • Dosch, D., Salvacion, F., and Epstein, W. (1984).J. Bacteriol. 160, 1188–1190.

    Google Scholar 

  • Eckert, B., and Beck, C. F. (1989).J. Biol. Chem. 264, 11663–11670.

    Google Scholar 

  • Eddy, A. A. (1982).Adv. Microbial. Physiol. 23, 1–78.

    Google Scholar 

  • Eddy, A. A. (1989). In press.

  • Eiglmeier, K., Boos, W., and Cole, S. T. (1987).Mol. Microbiol. 1, 251–258.

    Google Scholar 

  • Eisenberg, D. (1985).Annu. Rev. Biochem. 53, 595–623.

    Google Scholar 

  • Eisenberg, D., Schwartz, E., Komaromy, M., and Wall, R. (1984).J. Mol. Biol. 179, 125–142.

    Google Scholar 

  • Fersht, A. R. (1985).Enzyme Structure and Mechanism. Wiley, New York, pp. 317–331.

    Google Scholar 

  • Flores, E., and Schmetterer, G. (1986).J. Bacteriol. 166, 693–696.

    Google Scholar 

  • Foster, D. L., Boublik, M., and Kaback, H. R. (1983).J. Biol. Chem. 258, 31–34.

    Google Scholar 

  • Fox, C. F., and Kennedy, E. P. (1965).Proc. Natl. Acad. Sci. USA 54, 891–899.

    Google Scholar 

  • Friedrich, M. J., and Kadner, R. J. (1987).J. Bacteriol. 169, 3556–3563.

    Google Scholar 

  • Fromm, H. J. (1979).Methods Enzymol. 63, 42–53.

    Google Scholar 

  • Fukumoto, H., Kayano, T., Buse, J. B., Edwards, Y., Pilch, P. F., Bell, G. I., and Seino, S. (1989).J. Biol. Chem. 264, 7776–7779.

    Google Scholar 

  • Fukumoto, H., Seino, S., Imura, H., Seino, Y., Eddy, R. L., Fukushima, Y., Byers, M. G., Shows, T. B., and Bell, G. I. (1988).Proc. Natl. Acad. Sci. USA 85, 5434–5438.

    Google Scholar 

  • Furlong, C. E. (1987). InEscherichia coli and Salmonella typhimurium' (Neidhardt, F. C., ed.), ASM, Washington, pp. 768–796.

    Google Scholar 

  • Garnier, J., Osguthorpe, D. J., and Rosen, B. (1978).J. Mol. Biol. 120, 97–120.

    Google Scholar 

  • Gogarten, P. G., and Bentrup, F.-W. (1989).Planta 178, 52–60.

    Google Scholar 

  • Griffin, J. F., Rampal, A. L., and Jung, C. Y. (1982).Proc. Natl. Acad. Sci. USA 79, 3759–3763.

    Google Scholar 

  • Hanada, K., Yamato, I., and Anraku, Y. (1985).FEBS Lett. 191, 278–282.

    Google Scholar 

  • Hanada, K., Yamato, I., and Anraku, Y. (1988a).Biochim. Biophys. Acta 939, 282–288.

    Google Scholar 

  • Hanada, K., Yamato, I., and Anraku, Y. (1988b).J. Biol. Chem. 263, 7181–7185.

    Google Scholar 

  • Haspel, H. C., Rosenfeld, M. G., and Rosen, O. M. (1988).J. Biol. Chem. 263, 398–403.

    Google Scholar 

  • Hediger, M. A., Coady, M. J., Ikeda, T. S., and Wright, E. M. (1987).Nature (London)330, 379–381.

    Google Scholar 

  • Hediger, M. A., Turk, E., and Wright, E. M. (1989).Proc. Natl. Acad. Sci. USA 86, 5748–5752.

    Google Scholar 

  • Henderson, R., and Unwin, P. N. T. (1975).Nature (London)257, 28–32.

    Google Scholar 

  • Henderson, P. J. F. (1985). InTechniques in Protein and Enzyme Biochemistry, Part II Supplement (Tipton, K. F., ed.), Elsevier, Dublin, pp. 1–48.

    Google Scholar 

  • Henderson, P. J. F. (1986). InCarbohydrate Metabolism in Cultured Cells (Morgan, M. J., ed.), Plenum Press, London, pp. 409–460.

    Google Scholar 

  • Henderson, P. J. F., and Kornberg, H. L. (1975). InEnergy Transformation in Biological systems, Ciba Foundation Symposium Vol. 31, Elsevier, Amsterdam, pp. 243–269.

    Google Scholar 

  • Henderson, P. J. F., and Macpherson, A. J. S. (1986).Methods Enzymol. 125, 387–429.

    Google Scholar 

  • Henderson, P. J. F., and Maiden, M. C. J. (1990).Philos. Trans. R. Soc. London Ser. B 326, 391–410.

    Google Scholar 

  • Henderson, R., and Schertler, G. (1990).Philos. Trans. R. Soc. London Ser. B 326, 379–390.

    Google Scholar 

  • Henderson, P. J. F., Giddens, R. A., and Jones-Mortimer, M. C. (1977).Biochem. J. 162, 309–320.

    Google Scholar 

  • Henderson, P. J. F., Hirata, H., and Kagawa, Y. (1983a).Biochim. Biophys. Acta 732, 204–209.

    Google Scholar 

  • Henderson, P. J. F., Hirata, H., Horne, P., Jones-Mortimer, M. C., Kaethner, T. E., and Macpherson, A. J. S. (1983b). InBiochemistry of Metabolic Processes (Lennon, D. L. F., Stratman, F. W., and Zahlten, R. N., eds.), Elsevier, New York, pp. 339–352.

    Google Scholar 

  • Hickey, M. W., Hiller, A. J., and Jago, G. R. (1986).Appl. Environ. Microbiol. 51, 825–831.

    Google Scholar 

  • Higgins, C. J. (1989).Nature (London)341, 103.

    Google Scholar 

  • Higgins, C. F., Gallagher, M. P., Hyde, S. C., Mimmack, M. L., and Pearce, S. R. (1990).Philos. Trans. R. Soc. London Ser. B 326, 353–366.

    Google Scholar 

  • Hillen, W., and Schollmeier, K. (1983).Nucleic Acids Res. 11, 525–539.

    Google Scholar 

  • Holman, G. D., and Rees, W. D. (1987).Biochim. Biophys. Acta 897, 395–405.

    Google Scholar 

  • Horne, P. (1980). Ph.D. Thesis, University of Cambridge.

  • Horne, P., and Henderson, P. J. F. (1983).Biochem. J. 210, 699–705.

    Google Scholar 

  • Hutchings, V. (1978a).Planta 138, 229–235.

    Google Scholar 

  • Hutchings, V. (1978b).Planta 138, 237–241.

    Google Scholar 

  • Ishiguro, N., and Sato, G. (1985).J. Bacteriol. 164, 977–982.

    Google Scholar 

  • James, D. E., Strube, M., and Mueckler, M. (1989).Nature (London)338, 83–87.

    Google Scholar 

  • Jones, T. D. H., and Kennedy, E. P. (1969).J. Biol. Chem. 244, 5981–5987.

    Google Scholar 

  • Jones-Mortimer, M. C., and Henderson, P. J. F. (1986).Methods Enzymol. 125, 157–180.

    Google Scholar 

  • Joset, F., Buchou, T., Zhang, C.-C., and Jeanjean, R. (1988).Arch. Microbiol. 149, 417–421.

    Google Scholar 

  • Jund, R., Weber, E., and Chevallier, M.-R. (1988).Eur. J. Biochem. 171, 417–424.

    Google Scholar 

  • Jung, C. Y., and Rampal, A. L. (1977).J. Biol. Chem. 252, 5456–5463.

    Google Scholar 

  • Kaback, H. R. (1972).Biochim. Biophys. Acta 265, 367–416.

    Google Scholar 

  • Kaback, H. R. (1974).Science 186, 882–892.

    Google Scholar 

  • Kaback, H. R. (1986).Ann. N.Y. Acad. Sci. 456, 291–304.

    Google Scholar 

  • Kaback, H. R. (1987).Biochemistry 26, 2071–2076.

    Google Scholar 

  • Kaback, H. R. (1989).Harvey Lect. 83, 77–105.

    Google Scholar 

  • Kaback, H. R. (1990).Philos. Trans. R. Soc. London Ser. B 326, 425–436.

    Google Scholar 

  • Kaczorowski, G. J., Leblanc, G., and Kaback, H. R. (1980).Proc. Natl. Acad. Sci. USA 77, 6319–6323.

    Google Scholar 

  • Kaestner, K. M., Christy, R. J., McLenithan, J. C., Braiterman, L. T., Cornelius, P., Pekala, P. M., and Lane, M. D. (1989).Proc. Natl. Acad. Sci. USA 86, 3150–3154.

    Google Scholar 

  • Karim, A. R., Rees, W. D., and Holman, G. D. (1987).Biochim. Biophys. Acta 902, 402–405.

    Google Scholar 

  • Kartner, N. and Ling, V. (1989).Sci. Am., March, 26–33.

  • Kasahara, M., and Hinkle, P. (1977).J. Biol. Chem. 252, 7384–7390.

    Google Scholar 

  • Kayano, T., Fukumoto, H., Eddy, R. L., Fan, Y. S., Byers, M. G., Shows, T. B., and Bell, G. I. (1988).J. Biol. Chem. 263, 15245–15248.

    Google Scholar 

  • Kennedy, E. P. (1970). InThe Lactose Operon (Beckwith, J. R., and Zipser, D., eds.), Cold Spring Harbor, New York, pp. 49–92.

    Google Scholar 

  • King, S. C., and Wilson, T. H. (1989a).J. Biol. Chem. 264, 7390–7394.

    Google Scholar 

  • King, S. C., and Wilson, T. H. (1989b).Biochim. Biophys. Acta 982, 253–264.

    Google Scholar 

  • Kohara, Y., Akiyama, K., and Isono, K. (1987).Cell 50, 495–508.

    Google Scholar 

  • Kolodrubetz, D., and Schleif, R. F. (1981).J. Mol. Biol. 151, 215–227.

    Google Scholar 

  • Komor, E., and Tanner, W. (1974).Eur. J. Biochem. 44, 219–223.

    Google Scholar 

  • Kosiba, B. E., and Schleif, R. F. (1982).J. Mol. Biol. 156, 53–56.

    Google Scholar 

  • Kornberg, H. L. (1990).Philos. Trans. R. Soc. London Ser. B 326, 505–514.

    Google Scholar 

  • Kotyk, A. (1983).J. Bioenerg. Biomembr. 15, 307–319.

    Google Scholar 

  • Kyte, J., and Doolittle, R. F. (1982).J. Mol. Biol. 157, 105–132.

    Google Scholar 

  • Lam, V. M. S., Daruwalla, K. D., Henderson, P. J. F., and Jones-Mortimer, M. C. J. (1980).J. Bacteriol. 143, 396–402.

    Google Scholar 

  • Leblanc, G., Pourcher, T., and Bassilana, M. (1989).Biochimie 71, 969–979.

    Google Scholar 

  • Lefevre, P. G. (1961).Pharmacol. Rev. 13, 39–70.

    Google Scholar 

  • Lengeler, J. W., Titgemeyer, F., Vogler, A. P., and Wohrl, B. M. (1990).Philos. Trans. R. Soc. London Ser. B 326, 489–504.

    Google Scholar 

  • Levy, S. (1984). InAntimicrobial Drug Resistance (Brian, L. E., ed.), Academic Press, New York, pp. 191–240.

    Google Scholar 

  • Levy, S. (1988).ASM News 54, 418–421.

    Google Scholar 

  • Lin, E. C. C. (1987). InEscherichia coli and Salmonella typhimurium (Neidhardt, F. C., ed.), ASM, Washington, pp. 244–284.

    Google Scholar 

  • Lodish, H. F. (1988).Trends Biochem. Sci. 13, 332–334.

    Google Scholar 

  • Lombardi, F. J. (1981).Biochim. Biophys. Acta 649, 661–679.

    Google Scholar 

  • Lowe, A. G., and Walmsley, A. R. (1986).Biochim. Biophys. Acta 857, 146–154.

    Google Scholar 

  • Lu, Z., and Lin, E. C. C. (1989).Nucleic Acids Res. 17, 4883–4884.

    Google Scholar 

  • Macpherson, A. J. S., Jones-Mortimer, M. C., and Henderson, P. J. F. (1981).Biochem. J. 196, 269–283.

    Google Scholar 

  • Macpherson, A. J. S., Jones-Mortimer, M. C., Horne, P., and Henderson, P. J. F. (1983).J. Biol. Chem. 258, 4390–4396.

    Google Scholar 

  • Maiden, M. C. J. (1987). Ph.D. thesis, University of Cambridge.

  • Maiden, M. C. J., Davis, E. O., Baldwin, S. A., Moore, D. C. M., and Henderson, P. J. F. (1987).Nature (London)325, 641–643.

    Google Scholar 

  • Maiden, M. C. J., Jones-Mortimer, M. C., and Henderson, P. J. F. (1988).J. Biol. Chem. 263, 8003–8010.

    Google Scholar 

  • Maloney, P. C. (1990).Philos. Trans. R. Soc. London Ser. B 326, 437–454.

    Google Scholar 

  • Manoil, C., and Beckwith, J. (1986).Science 233, 1403–1408.

    Google Scholar 

  • Markgraf, M., Bocklage, H., and Muller-Hill, B. (1985).Mol. Gen. Genet. 198, 473–475.

    Google Scholar 

  • McKeown, B. J. (1988). CPGS thesis, University of Cambridge.

  • McMorrow, I., Chin, D. T., Fiebig, K., Pierce, J. L., Wilson, D. M., Reeve, E. C. R., and Wilson, T. H. (1988).Biochim. Biophys. Acta 945, 315–323.

    Google Scholar 

  • McMurry, L. M., Petrucci, R. R., and Levy, S. B. (1980).Proc. Natl. Acad. Sci. USA 77, 3974–3977.

    Google Scholar 

  • Menick, D., Lee, J. A., Brooker, R. J., Wilson, T. H., and Kaback, H. R. (1987).Biochemistry 26, 1132–1136.

    Google Scholar 

  • Mitchell, P. (1961).Nature (London)191, 144–148.

    Google Scholar 

  • Mitchell, P. (1963).Biochem. Soc. Symp. 22, 142–169.

    Google Scholar 

  • Mitchell, P. (1973).J. Bioenerg. 4, 63–91.

    Google Scholar 

  • Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Leinhard, G. E., and Lodish, H. (1985).Science 229, 941–945.

    Google Scholar 

  • Muiry, J. A. R. (1989). Ph.D. Thesis, University of Cambridge.

  • Nakao, T., Yamato, I., and Anraku, Y. (1987).Mol. Gen. Genet. 208, 70–75.

    Google Scholar 

  • Newman, M. J., and Wilson, T. H. (1980).J. Biol. Chem. 255, 10583–10586.

    Google Scholar 

  • Newman, M. J., Foster, D. L., Wilson, T. H., and Kaback, H. R. (1981).J. Biol. Chem. 256, 11804–11808.

    Google Scholar 

  • Nordlie, R. C. (1985). InMetabolic Regulation (Ochs, R. S., Hanson, R. W., and Hall, J., eds.), Elsevier, Amsterdam, pp. 60–69.

    Google Scholar 

  • Overath, P., Weigel, U., Neuhaus, J.-M., Soppa, J., Seckler, R., Riede, I., Bocklage, H., Muller-Hill, B., Aichelle, G., and Wright, J. K. (1987).Proc. Natl. Acad. Sci. USA 84, 5535–5539.

    Google Scholar 

  • Page, M. G., and Rosenbusch, J. P. (1988).J. Biol. Chem. 263, 15906–15914.

    Google Scholar 

  • Page, M. G., Rosenbusch, J. P., and Yamato, I. (1988).J. Biol. Chem. 263, 15897–15905.

    Google Scholar 

  • Patel, L., Garcia, M. L., and Kaback, H. R. (1982).Biochemistry 21, 5805–5810.

    Google Scholar 

  • Peden, K. W. (1983).Gene 22, 277–280.

    Google Scholar 

  • Petro (1988). M. Philos. Thesis, University of Cambridge.

  • Poolman, B., Royer, T. J., Mainzer, S. E., and Schmidt, B. F. (1989).J. Bacteriol. 171, 244–253.

    Google Scholar 

  • Postma, P. W., and Lengeler, J. W. (1985).Microbiol. Rev. 49, 232–269.

    Google Scholar 

  • Pourcher, T., Bassilana, M., Sarkar, H. K., Kaback, H. R., and Leblanc, G. (1990).Philos. Trans. R. Soc. London Ser. B 326, 411–424.

    Google Scholar 

  • Quiocho, F. A. (1986).Annu. Rev. Biochem. 55, 287–315.

    Google Scholar 

  • Quiocho, F. A. (1990).Philos. Trans. R. Soc. London. Ser. B 326, 341–352.

    Google Scholar 

  • Raboy, B., and Padan, E. (1978).J. Biol. Chem. 253, 3287–3291.

    Google Scholar 

  • Rampal, A. L., and Jung, C. Y. (1987).Biochim. Biophys. Acta 896, 287–294.

    Google Scholar 

  • Rausch, T., Raszeja-Specht, A., and Koepsell, H. (1989).Biochim. Biophys. Acta 985, 133–138.

    Google Scholar 

  • Rees, W. D., and Holman, G. D. (1981).Biochim. Biophys. Acta 646, 251–260.

    Google Scholar 

  • Reynolds, C. H., and Silver, S. (1983).J. Bacteriol. 156, 1019–1024.

    Google Scholar 

  • Riordan, C., and Kornberg, H. L. (1977).Proc. R. Soc. London Ser. B 198, 401–410.

    Google Scholar 

  • Riordanet al. (1989).Science 245, 1066–1073.

    Google Scholar 

  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y. (1979).J. Gen. Microbiol. 111, 1–61.

    Google Scholar 

  • Roepe, P. D., and Kaback, H. R. (1989).Proc. Natl. Acad. Sci. USA 86, 6087–6091.

    Google Scholar 

  • Roepe, P. D., Consler, T. J., Menezes, M. E., and Kaback, H. R. (1990).Res. Microbiol. 141, 290–308.

    Google Scholar 

  • Romano, A. H. (1986). InCarbohydrate Metabolism in Cultured Cells (Morgan, M. J., ed.), Plenum Press, London, pp. 225–244.

    Google Scholar 

  • Saier, M. H. (1985).Mechanisms and Regulation of Carbohydrate Transport in Bacteria, Academic Press, New York.

    Google Scholar 

  • Sasatsu, M., Misra, T. K., Chu, L., Ladagu, R., and Silver, S. (1985).J. Bacteriol. 164, 983–993.

    Google Scholar 

  • Sauer, N., and Tanner, W. (1989).FEBS Lett. 259, 43–46.

    Google Scholar 

  • Severin, J., Langel, P., and Hofer, M. (1989).J. Bioenerg. Biomembr. 21, 321–334.

    Google Scholar 

  • Shanahan, M. F. (1982).J. Biol. Chem. 257, 7290–7293.

    Google Scholar 

  • Silhavy, T. J., Berman, M. L., and Enquist, L. W. (1984).Experiments with Gene Fusions, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  • Stein, W. (1986).Transport and Diffusion across Cell Membranes, Academic Press, Orlando, Florida.

    Google Scholar 

  • Stoker, N. G., Pratt, J. M., and Holland, I. B. (1984). InTranscription and Translation—A Practical Approach (Hames, B. D., and Higgins, S. J., eds.), IRL Press, Oxford, pp. 153–177.

    Google Scholar 

  • Stoner, C., and Schleif, R. F. (1983).J. Mol. Biol. 171, 369–381.

    Google Scholar 

  • Sumiya, M. (1989). Ph.D. thesis, University of Cambridge.

  • Szkutnicka, K., Tschopp, J. F., Andrews, L., and Cirillo, V. P. (1989).J. Bacteriol. 171, 4486–4493.

    Google Scholar 

  • Tabor, S., and Richardson, C. C. (1985).Proc. Natl. Acad. Sci. USA 82, 1074–1079.

    Google Scholar 

  • Teather, R. M., Muller-Hill, B., Abrutsch, U., Aichele, G., and Overath, P. (1978).Mol. Gen. Genet. 159, 239–248.

    Google Scholar 

  • Thorens, B., Sarkar, H. K., Kaback, H. R., and Lodish, H. F. (1988).Cell 55, 281–291.

    Google Scholar 

  • Tobin, J. F., and Schleif, R. F. (1987).J. Mol. Biol. 196, 789–799.

    Google Scholar 

  • Tsuchiya, T., Ottina, K., Moriyama, Y., Newman, M. J., and Wilson, T. H. (1982).J. Biol. Chem. 257, 5125–5128.

    Google Scholar 

  • van Dijken, J. P., and Scheffers, W. A. (1986).FEMS Microbiol. Rev. 32, 199–224.

    Google Scholar 

  • Viitanen, P., Newman, M. J., Foster, D. L., Wilson, T. H., and Kaback, H. R. (1986).Methods Enzymol. 125, 429–452.

    Google Scholar 

  • Vilaro, S., Palacin, M., Pilch, P. F., Testar, X., and Zorzano, A. (1989).Nature (London)342, 798–800.

    Google Scholar 

  • von Heijne, G. (1987).Sequence Analysis in Molecular Biology—Treasure Trove or Trivial Pursuit. Academic Press, London.

    Google Scholar 

  • Von Heijne, G. (1988).Biochim. Biophys. Acta 947, 307–333.

    Google Scholar 

  • Walmsley, A. R. (1988).Trends Biochem. Sci. 13, 226–231.

    Google Scholar 

  • Waters, S. H., Rogowsky, J., Grinstead, J., Altenbuchner, J., and Schmitt, R. (1983).Nucleic Acids Res. 11, 6089–6140.

    Google Scholar 

  • West, I. C., (1970).Biochem. Biophys. Res. Commun. 41, 655–661.

    Google Scholar 

  • West, I. C., and Mitchell, P. (1972).J. Bioenerg. 3, 445–462.

    Google Scholar 

  • West, I. C., and Mitchell, P. (1973).Biochem. J. 132, 587–592.

    Google Scholar 

  • Wheeler, T. J., and Hinkle, P. C. (1985).Annu. Rev. Physiol. 47, 503–517.

    Google Scholar 

  • Wilson, D. M., and Wilson, T. H. (1987).Biochim. Biophys. Acta 904, 191–200.

    Google Scholar 

  • Wilson, D. M., Tsuchiya, T., and Wilson, T. H. (1986).Methods Enzymol. 125, 377–387.

    Google Scholar 

  • Wright, J. K., Teather, R. M., and Overath, P. (1983).Methods Enzymol. 97, 158–175.

    Google Scholar 

  • Yao, B., Sollitti, P., and Marmur, J. (1989).Gene 79, 189–197.

    Google Scholar 

  • Yazyu, H., Shiota-Niija, S., Shimamoto, T., Kanazawa, H., Futai, M., and Tsuchiya, T. (1984).J. Biol. Chem. 259, 4320–4326.

    Google Scholar 

  • Yazyu, H., Shiota-Niija, S., Futai, M., and Tsuchiya, T. (1985).J. Bacteriol. 162, 933–937.

    Google Scholar 

  • Zhang, C.-C., Durand, M.-C., Jeanjean, R., and Joset, F. (1989).Mol. Microbiol. 3, 1221–1229.

    Google Scholar 

  • Zilberstein, D., and Dwyer, D. M. (1985).Proc. Natl. Acad. Sci. USA 82, 1716–1720.

    Google Scholar 

  • Zilberstein, D., Dwyer, D. M., Matthei, S., and Horuk, R. (1986).J. Biol. Chem. 261, 15053–15057.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, P.J.F. Proton-linked sugar transport systems in bacteria. J Bioenerg Biomembr 22, 525–569 (1990). https://doi.org/10.1007/BF00762961

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762961

Key Words

Navigation