Skip to main content
Log in

Selective oxidation of methane with air over silica catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Partial oxidation of methane by oxygen to form formaldehyde, carbon oxides, and C2 products (ethane and ethene) has been studied over silica catalyst supports (fumed Cabosil and Grace 636 silica gel) in the 630–780 °C temperature range under ambient pressure. The silica catalysts exhibit high space time yields (at low conversions) for methane partial oxidation to formaldehyde, and the C2 hydrocarbons were found to be parallel products with formaldehyde. Short residence times enhanced both the C2 hydrocarbons and formaldehyde selectivities over the carbon oxides even within the differential reactor regime at 780 °C. This suggests that the formaldehyde did not originate from methyl radicals, but rather from methoxy complexes formed upon the direct chemisorption of methane at the silica surface at high temperature. Very high formaldehyde space time yields (e.g., 812 g/kg cat h at the gas hourly space velocity = 560 000 ℓ(NTP)/kg cat h) could be obtained over the silica gel catalyst at 780 °C with a methane/air mixture of 1.5/1. These yields greatly surpass those reported for silicas earlier, as well as those over many other catalysts. Low CO2 yields were observed under these reaction conditions, and the selectivities to formaldehyde and C2 hydrocarbons were 28.0 and 38.8%, respectively, at a methane conversion of 0.7%. A reaction mechanism was proposed for the methane activation over the silica surface based on the present studies, which can explain the product distribution patterns (specifically the parallel formation of formaldehyde and C2 hydrocarbons).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Pitchai and K. Klier, Catal. Rev. Sci. Eng. 28 (1986) 13.

    Google Scholar 

  2. Y. Amenomiya, V.I. Goledzinowski, J. Galuszka and A.R. Sanger, Catal. Rev. Sci. Eng. 32 (1990) 163.

    Google Scholar 

  3. H.-F. Liu, R.-S. Liu, K.Y. Liew, R.E. Johnson and J.H. Lunsford, J. Am. Chem. Soc. 106 (1984) 4117.

    Google Scholar 

  4. K.J. Zhen, M.M. Khan, C.H. Mak, K.B. Lewis and G.A. Somorjai, J. Catal. 94 (1985) 501.

    Google Scholar 

  5. N.D. Spencer, J. Catal. 109 (1988) 187.

    Google Scholar 

  6. N.D. Spencer and C.J. Pereira, J. Catal. 116 (1989) 399.

    Google Scholar 

  7. S. Kasztelan and J.B. Moffat, J. Chem. Soc. Chem. Commun. (1987) 1663.

  8. S. Ahmed and J.B. Moffat, J. Catal. 118 (1989) 281.

    Google Scholar 

  9. G.N. Kastanas, G.A. Tsigdinos and J. Schwank, Appl. Catal. 44 (1988) 33.

    Google Scholar 

  10. G.N. Kastanas, G.A. Tsigdinos and J. Schwank, J. Chem. Soc. Chem. Commun. (1988) 1298.

  11. S. Ahmed and J.B. Moffat, Appl. Catal. 58 (1990) 83.

    Google Scholar 

  12. A. Parmaliana, F. Frusteri, D. Miceli, A. Mezzapica, M.S. Scurrell and N. Giordano, Appl. Catal. 78 (1991) L7.

    Google Scholar 

  13. Y. Matsumura, K. Hashimoto and J.B. Moffat, Catal. Lett. 13 (1992) 283.

    Google Scholar 

  14. Q. Sun, J.I. Di Cosimo, R.G. Herman, K. Klier and M.M. Bhasin, Catal. Lett. 15 (1992) 371.

    Google Scholar 

  15. J.F. Walker,Formaldehyde (Reinhold, New York, 1964) p. 489.

    Google Scholar 

  16. M.J. Brown and N.D. Parkyns, Catal. Today 8 (1991) 305.

    Google Scholar 

  17. Y.-D. Tong and J.H. Lunsford, J. Am. Chem. Soc. 113 (1991) 4741.

    Google Scholar 

  18. J.M. DeBoy and R.F. Hicks, Ind. Eng. Chem. Res. 27 (1988) 1577.

    Google Scholar 

  19. J.M. DeBoy and R.F. Hicks, J. Catal. 113 (1988) 517.

    Google Scholar 

  20. Y. Feng, J. Niiranen and D. Gutman, J. Phys. Chem. 95 (1991) 6558, 6564.

    Google Scholar 

  21. M. Xu and J.H. Lunsford, Catal. Lett. 11 (1992) 295.

    Google Scholar 

  22. C.N. Satterfield,Heterogeneous Catalysis in Industrial Practice, 2nd Ed. (McGraw-Hill, New York, 1991) p. 528.

    Google Scholar 

  23. C. Morterra and M.J.D. Low, J. Chem. Soc. Chem. Commun. (1968) 203.

  24. M.J.D. Low, J. Catal. 103 (1987) 496.

    Google Scholar 

  25. K. Klier, J.H. Shen and A.C. Zettlemoyer, J. Phys. Chem. 77 (1973) 1458.

    Google Scholar 

  26. J.H. Shen and K. Klier, J. Colloid Interface Sci. 75 (1980) 56.

    Google Scholar 

  27. B.A. Morrow and L.A. Cody, J. Phys. Chem. 80 (1976) 1995, 1998.

    Google Scholar 

  28. B.A. Morrow and L.A. Cody, J. Phys. Chem. 80 (1976) 2761.

    Google Scholar 

  29. D.R. Tallant, B.C. Bunker, C.J. Brinker and C.A. Balfe, in:Better Ceramics Through Chemistry, MRS Symp. Proc., Vol. 73, eds. C.J. Brinker, D.E. Clark and D.R. Ulrich (1986) 261.

  30. V. Gottardi, M. Guglielmi, A. Bertoluzza, C. Fagnano and M.A. Morelli, J. Non-Cryst. Solids 63 (1984) 71.

    Google Scholar 

  31. D.M. Krol and J.G. van Lierop, J. Non-Cryst. Solids 63 (1984) 131.

    Google Scholar 

  32. C.J. Brinker, D.R. Tallant, E.P. Roth and C.S. Ashley, in:Defects in Glasses, MRS Symp. Proc., Vol. 61, eds. F.L. Galeener, D.L. Griscom and M.J. Weber (1986) 387.

  33. R.K. Iler,The Chemistry of Silica (Wiley, New York, 1979).

    Google Scholar 

  34. T.A. Michalske and B.C. Bunker, J. Appl. Phys. 56 (1984) 2686.

    Google Scholar 

  35. N. Sheppard and D.J.C. Yates, Proc. Roy. Soc. A238 (1956) 69.

    Google Scholar 

  36. J.P. Gallas, J.C. Lavalley, A. Burneau and O. Barres, Langmuir 7 (1991) 1235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q., Herman, R.G. & Klier, K. Selective oxidation of methane with air over silica catalysts. Catal Lett 16, 251–261 (1992). https://doi.org/10.1007/BF00764337

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00764337

Keywords

Navigation