Skip to main content
Log in

Lymphocyte granule-mediated cell death

  • Published:
Springer Seminars in Immunopathology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bleackley RC, Atkinson EA, Burns K, Michalak M (1995) Calreticulin: a granule-protein by default or design? Curr Top Microbiol Immunol 198:145

    Google Scholar 

  2. Brown GR, McGuire MJ, Thiele DL (1993) Dipeptidyl peptidase I is enriched in granules of in vitro and in vivo-activated cytotoxic T lymphocytes. J Immunol 150:4733

    Google Scholar 

  3. Brunet JF, Dosseto M, Denizot F, et al (1986) The inducible cytotoxic T-lymphocyte-associated gene transcript CTLA-1 sequence and gene localization to mouse chromosome 14. Nature 322:268

    Google Scholar 

  4. Burkhardt JK, McIlvain JM, Schectz MP, Argon Y (1993) Lyric granules of cytotoxic T cells exhibit kinesin-dependent motility on microtubules in vitro. J Cell Sci 104:151

    Google Scholar 

  5. Caputo A, Garner RS, Winkler U, Hudig D, Bleackley RC (1993) Activation of recombinant murine cytotoxic cell proteinase-1 requires deletion of an amino-terminal dipeptide. J Biol Chem 268:17672

    Google Scholar 

  6. Chang TW, Eisen HN (1980) Effects ofN-alpha-tosyl-l-lysyl-chloromethylketone on the activity of cytotoxic T lymphocytes. J Immunol 124:1028

    Google Scholar 

  7. Chen RH, Ivens KW, Alpert S, Billingham ME, Fathman CG, Flavin TF, Shizuru JA, Stares VA, Weissman IL, Griffiths GM (1993) The use of granzyme A as a marker of heart transplant rejection in cyclosporine or anti-CD4 monoclonal antibody-treated rats. Transplantation 55:146

    Google Scholar 

  8. Chinnaiyan AM, O'Rourke K, Lane BR, Dixit VM (1997) Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275:1122

    Google Scholar 

  9. Chiu VK, Walsh CM, Liu CC, Reed JC, Clark WR (1995) Bcl-2 blocks degranulation but not fas-based cell-mediated cytotoxicity. J Immunol 154:2023

    Google Scholar 

  10. Clem RJ, Miller LK (1993) Apoptosis reduces both the in vitro replication and the in vivo infectivity of a baculovirus. J Virol 67:3730

    Google Scholar 

  11. Clem RJ, Fechheimer M, Miller LK (1991) Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254:1388

    Google Scholar 

  12. Cory S (1995) Regulation of lymphocyte survival by the bel-2 gene family. Annu Rev Immunol 13:513

    Google Scholar 

  13. Darmon AL, Ehrman N, Caputo A, Fujinaga J, Bleackley RC (1994) The cytotoxic T cell proteinase granzyme B does not activate interleukin-1 betaconverting enzyme. J Biol Chem 269:32043

    Google Scholar 

  14. Darmon AJ, Nicholson DW, Bleackley RC (1995) Activation of the apoptotic protease CPP32 by cytotoxic T -cell-derived granzyme B. Nature 377:446

    Google Scholar 

  15. Dennen G, Podack ER (1983) Cytolysis by H-2-specific T killer cells. Assembly of tubular complexes on target membranes. J Exp Med 157:1483

    Google Scholar 

  16. Devergne O, Peuchmaur M, Crevon MC, Trapani JA, Maillot MC, Galanaud P, Emilie D (1991) Activation of cytotoxic cells in hyperplastic lymph nodes from HIV infected patients. Aids 5:1071

    Google Scholar 

  17. Dourmashkin RR, Deteix P, Simone CB, Henkart P (1980) Electron microscopic demonstration of lesions in target cell membranes associated with antibody-dependent cellular cytotoxicity. Clin Exp Immunol 42:554

    Google Scholar 

  18. Ebnet K, Chluba-de Tapia J, Hurtenbach U, Kramer MD, Simon MM (1991) In vivo primed mouse T cells selectively express T cell-specific serine proteinase-1 and the proteinase-like molecules granzyme B and C. Int Immunol 3:9

    Google Scholar 

  19. Ebnet K, Hausmann M, Lehmann-Grube F, Mullbacher A, Kopf M, Lamers M, Simon MM (1995) Granzyme A-deficient mice retain potent cell-mediated cytotoxicity. EMBO J 14: 4230

    Google Scholar 

  20. Femandes-Alnemri T, Armstrong RC, Krebs J, Srinivasula SM, Wang L, Bullrich F, Fritz LC, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES (1996) In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci USA 93:7464

    Google Scholar 

  21. Froelich CJ, Orth K, Turbov J, Seth P, Gottlieb R, Babior B, Shah GM, Bleackley RC, Dixit VM, Hanna W (1996) New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J Biol Chem 271: 29073

    Google Scholar 

  22. Froelich CJ, Hanna WL, Poirier GG, Duriez DJ, D'Amours D, Salvesan GS, Alnemri ES, Earnshaw WC, Shah GM (1996) Granzyme B/perforin-mediated apoptosis of Jurkat cells results in cleavage of poly(ADP-ribose) polymerase to the 89-kDa apoptotic fragment and less abundant 64-kDa fragment. Biochem Biophys Res Common 227:658

    Google Scholar 

  23. Garcia-Sanz JA, Plaetinck G, Velotti F, Masson D, Tschopp J, MacDonald HR, Nabholz M (1987) Perform is present only in normal activated Lyt2+ T lymphocytes and not in L3T4+ cells, but the serine protease granzyme A is made by both subsets. EMBO J 6:933

    Google Scholar 

  24. Gershenfeld HK, Weissman IL (1986) Cloning of a cDNA for a T cell-specific serene protease from a cytotoxic T lymphocyte. Science 232:854

    Google Scholar 

  25. Griffiths GM, Isaaz S (1993) Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J Cell Biol 120:885

    Google Scholar 

  26. Griffiths GM, Mueller C (1991) Expression of perforin and granzymes in vivo: potential diagnostic markers for activated cytotoxic cells. Immunol Today 12:415

    Google Scholar 

  27. Griffiths GM, Namikawa R, Mueller C, Liu CC, Young JD, Billingham M, Weissman I (1991) Granzyme A and perform as markers for rejection in cardiac transplantation. Eur J Immunol 21:687

    Google Scholar 

  28. Grobler JA, Essen LO, Williams RL, Hurley JH (1996) C2 domain conformational changes in phospholipase C-delta 1. Nat Struct Biol 3:788

    Google Scholar 

  29. Harvey NL, Trapani JA, Femandes-Alnemri T, Litwack G, Alnemri ES, Kumar S (1996) Processing of the Nedd2 precursor by ICE-like proteases and granzyme B. Genes Cells 1:673

    Google Scholar 

  30. Hayes MP, Berrebi GA, Henkart PA (1989) Induction of target cell DNA release by the cytotoxic T lymphocyte granule protease granzyme A. J Exp Med 170:933

    Google Scholar 

  31. Henkart PA (1994) Lymphocyte-mediated cytotoxicity: two pathways and multiple effector molecules. Immunity 1:343

    Google Scholar 

  32. Henkart PA, Berrebi GA, Takayama H, Munger WE, Sitkovsky MV (1987) Biochemical and functional properties of serine esterases in acidic cytoplasmic granules of cytotoxic T lymphocytes. J Immunol 139:2398

    Google Scholar 

  33. Hensel JW, Wesselschmidt RL, Shresta S, Russell JH, Ley TJ (1994) Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76:977

    Google Scholar 

  34. Irmler M, Hertig S, MacDonald HR, Sadoul R, Becherer JD, Proudfoot A, Solari R, Tschopp J (1995) Granzyme A is an interleukin 1 beta-converting enzyme. J Exp Med 181:1917

    Google Scholar 

  35. Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268: 10932

    Google Scholar 

  36. Jacobson MD, Bume JF, Ralf MC (1994) Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO 113:1899

    Google Scholar 

  37. Jans DA, Jans P, Briggs LJ, Sutton V, Trapani JA (1996) Nuclear transport of granzyme B (fragmentin-2). Dependence of perforin in vivo and cytosolic factors in vitro. J Biol Chem 271:30781

    Google Scholar 

  38. Jongstra J, Schall TJ, Dyer BJ, Clayberger C, Jorgensen J, Davis MM, Krensky AM (1987) The isolation and sequence of a novel gene from a human functional T cell line. J Exp Med 165: 601

    Google Scholar 

  39. Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkemagel RM, Hengartner H (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:31

    Google Scholar 

  40. Kataoka T, Takaku K, Magae J, Shinohara N, Takayama H, Kondo S, Nagai K (1994) Acidification is essential for maintaining the structure and function of lytic granules of CTI. Effect of concanamycin A, an inhibitor of vacuolar type H(+)-ATPase on CTL-mediated cytotoxicity. J Immunol 153:3938

    Google Scholar 

  41. Kataoka K, Naomoto Y, Shiozaki S, Matsuno T, Sakagami K, Okumura K, Orita K (1992) Infiltration of perforin-positive mononuclear cells into the rejected kidney allograft. Transplantation 53:240

    Google Scholar 

  42. Kaufmann SH (1989) Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res 49:5870

    Google Scholar 

  43. Kayalar C, Ord T, Testa MP, Zhong LT, Bredesen DE (1996) Cleavage of actin by interleukin 1 betaconverting enzyme to reverse DNase I inhibition. Proc Natl Acad Sci USA 93:2234

    Google Scholar 

  44. Kojima H, Shinohara N, Hanaoka S, et al (1994) Two distinct pathways of specific killing revealed by perform mutant cytotoxic T lymphocytes. Immunity 1:357

    Google Scholar 

  45. Kostura MJ, Tocci MJ, Limjuco G, Chin J, Cameron P, Hillman AG, Chartrain NA, Schmidt JA (1989) Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc Natl Acad Sci USA 86:5227

    Google Scholar 

  46. Kumar S, Lavin MF (1996) The ICE family of cysteine proteases as effectors of cell death. Cell Death Differ 3:155

    Google Scholar 

  47. Kwon BS, Wakulchik M, Liu CC, Persechini PM, Trapani JA, Haq AK, Kim Y, Young JD (1989) The structure of the mouse lymphocyte pore-forming protein perform. Biochem Biophys Res Commun 158:1

    Google Scholar 

  48. Lazebnik YA, Takahashi A, Moir RD, Goldman RD, Poirier GG, Kaufmann SH, Earnshaw WC (1995) Studies of the lamin protemase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sci USA 92:9042

    Google Scholar 

  49. Lindahl LT, Satoh MS, Poirier GG, Klungland A (1995) Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci 20:405

    Google Scholar 

  50. Lipman ML, Stevens AC, Bleackley RC, Helderman JH, McCune TR, Harmon WE, Shapiro ME, Rosen S, Strom TB (1992) The strong correlation of cytotoxic T lymphocyte-specific serine protease gene transcripts with renal allograft rejection. Transplantation 53:73

    Google Scholar 

  51. Liu CC, Rafii S, Granelli-Piperno A, Trapani JA, Young JD (1989) Perforin and serine esterase gene expression in stimulated human T cells. Kinetics, mitogen requirements, and effects of cyclosporin A. J Exp Med 170:2105

    Google Scholar 

  52. Liu CC, Walsh CM, Young JD (1995) Perform: structure and function. Immunol Today 16:194

    Google Scholar 

  53. Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175

    Google Scholar 

  54. Lobe CG, Finlay BB, Paranchych W, Paetkau VH, Bleackley RC (1986) Novel serine proteases encoded by two cytotoxic T lymphocyte-specific genes. Science 232:858

    Google Scholar 

  55. Lowin B, Beermann F, Schmidt A, Tschopp J (1994) A null mutation in the perform gene impairs cytolytic T lymphocyte- and natural killer cell-mediated cytotoxicity. Proc Natl Acad Sci USA 91:11571

    Google Scholar 

  56. Lowrey DM, Aebischer T, Olsen K, Lichtenheld M, Rupp F, Hengartner H, Podack ER (1989) Cloning, analysis, and expression of murine perform 1 cDNA, a component of cytolytic T -cell granules with homology to complement component C9. Proc Natl Acad Sci USA 86:247

    Google Scholar 

  57. Macen JL, Garner RS, Musy PY, Brooks MA, Turner PC, Moyer RW, McFadden G, Bleackley RC (1996) Differential inhibition of the Fas- and granule-mediated cytolysis pathways by the orthopoxvirus cytokine response modifier A/SPI-2 and SPI-1 protein. Proc Natl Acad Sci USA 93:9108

    Google Scholar 

  58. Masson D and Tschopp J (1987) A family of serine esterases in lyric granules of cytolytic T lymphocytes. Cell 49:679

    Google Scholar 

  59. McDowell G, Gahl WA (1997) Inherited disorders of glycoprotein synthesis: cell biological insights. Proc Soc Exp Biol Med 215:145

    Google Scholar 

  60. McGuire ML, Lipsky PE, Thiele DL (1993) Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J Biol Chem 268:2458

    Google Scholar 

  61. Moll H, Muller C, Gillitzer R, Fuchs H, Rollinghoff M, Simon MM, Kramer MD (1991) Expression of T -cell-associated serine protemase 1 during murineLeishmania major infection correlates with susceptibility to disease. Infect Immun 59:4701

    Google Scholar 

  62. Mullbacher A, Ebnet K, Blanden RV, Hla RT, Stehle T, Museteanu C, Simon MM (1996) Granzyme A is critical for recovery of mice from infection with the natural cytopathic viral pathogen, ectromelia. Proc Natl Acad Sci USA 93:5783

    Google Scholar 

  63. Muller C, Kagi D, Aebischer T, Odermatt B, Held W, Podack ER, Zinkernagel RM, Hengartner H (1989) Detection of perform and granzyme A mRNA in infiltrating cells during infection of mice with lymphocytic choriomeningitis virus. Eur J Immunol 19:1253

    Google Scholar 

  64. Nakajima H, Henkart PA (1994) Cytotoxic lymphocyte granzymes trigger a target cell internal disintegration pathway leading to cytolysis and DNA breakdown. J Immunol 152:1057

    Google Scholar 

  65. Nakajima H, Golstein P, Henkart PA (1995) The target cell nucleus is not required for cell-mediated granzyme- or Fas-based cytotoxicity. J Exp Med 181:1905

    Google Scholar 

  66. Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif. Structural and functional diversity. Protein Sci 5:2375

    Google Scholar 

  67. Nicholson DW, Ali A, Thornberry NA, et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37

    Google Scholar 

  68. Odake S, Kam CM, Narasimhan L, Poe M, Blake JT, Krahenbuhl O, Tschopp J, Powers JC (1991) Human and marine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry 30:2217

    Google Scholar 

  69. Pena SV, Hanson DA, Carr BA, Goralski TJ, Krensky AM (1997) Processing, sub-cellular location and function of 519 (Granulysin), a human late T cell activation molecule with homology to small lytic granule proteins. J Immunol 158:2680

    Google Scholar 

  70. Peters PJ, Borst J, Oorschot V, Fukuda M, Krahenbuhl O, Tschopp J, Slot JW, Geuze HJ (1991) Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perform and granzymes. J Exp Med 173:1099

    Google Scholar 

  71. Pinkoski MJ, Winkler U, Hudig D, Bleackley RC (1996) Binding of granzyme B in the nucleus of target cells. Recognition of an 80-kilodalton protein. J Biol Chem 271:10225

    Google Scholar 

  72. Podack ER, Dennert G (1983) Assembly of two types of tubules with putative cytolytic function by cloned- natural killer cells. Nature 302:442

    Google Scholar 

  73. Poe M, Blake JT, Boulton DA, Gammon M, Sigal NH, Wu JK, Zweerink HJ (1991) Human cytotoxic lymphocyte granzyme B. Its purification from granules and the characterization of substrate and inhibitor specificity. J Biol Chem 266:98

    Google Scholar 

  74. Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, Pickup DJ (1992) Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell 69:597

    Google Scholar 

  75. Sarin A, Williams MS, Alexander-Miller MA, Berzofsky JA, Zacharchuk CM, Henkart PA (1997) Target cell lysis by CTL granule exocytosis is independent of ICE/Ced-3 family proteases. Immunity 6:209

    Google Scholar 

  76. Sayers TJ, Wiltrout TA, Sowder R, Munger WL, Smyth MJ, Henderson LE (1992) Purification of a factor from the granules of a rat natural killer cell line (RNK) that reduces tumor cell growth and changes tumor morphology. Molecular identity with a granule serine protease (RNKP-1). J Immunol 148:292

    Google Scholar 

  77. Schroter M, Lowin B, Bomer C, Tschopp J (1995) Regulation of Fas(Apo-1/CD95)- and perform-mediated lytic pathways of primary cytotoxic T lymphocytes by the protooncogene bcl-2. Eur J Immunol 25:3509

    Google Scholar 

  78. Shao X, Davletov BA, Sutton RB, Sudhof TC, Rizo J (1996) Dipartite Ca 2+ binding motif in C2 domains of synaptotagmin and protein-kinase C. Science 273:248

    Google Scholar 

  79. Shi L, Kam CM, Powers JC, Aebersold R, Greenberg AH (1992) Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med 176:1521

    Google Scholar 

  80. Shi L, Kraut RP, Aebersold R, Greenberg AH (1992) A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J Exp Med 175:553

    Google Scholar 

  81. Shi L, Mai S, Israels S, Browne K, Trapani JA, Greenberg AH (1997) Granzyme B (GraB) autonomously crosses the cell membrane and perform initiates apoptosis and GraB nuclear localization. J Exp Med 185:855

    Google Scholar 

  82. Shinkai Y, Takio K, Okumura K (1988) Homology of perform to the ninth component of complement (C9). Nature 334:525

    Google Scholar 

  83. Shiver JW, Henkart PA (1991) A noncytotoxic mast cell tumor line exhibits potent IgE-dependent cytotoxicity after transfection with the cytolysin/perform gene. Cell 64:1175

    Google Scholar 

  84. Shiver JW, So L, Henkart PA (1992) Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell 71:315

    Google Scholar 

  85. Simon MM and Kramer MD (1994) Granzyme A. Methods Enzymol 244:68

    Google Scholar 

  86. Simon MM, Hoschutzky H, Froth U, Simon HG, Kramer MD (1986) Purification and characterization of a T cell specific serine protemase (TSP-1) from cloned cytolytic T lymphocytes. EMBO J 5:3267

    Google Scholar 

  87. Smyth MJ, Trapani JA (1995) Granzymes: exogenous proteinases that induce target cell apoptosis. Immunol Today 16:202

    Google Scholar 

  88. Smyth MJ, Ortaldo JR, Bere W, Yagita H, Okumura K, Young HA (1990) IL-2 and IL-6 synergize to augment the pore-forming protein gene expression and cytotoxic potential of human peripheral blood T cells. J Immunol 145:1159

    Google Scholar 

  89. Smyth MJ, Ortaldo JR, Shinkai Y, Yagita H, Nakata M, Okumura K, Young HA (1990) Interleukin 2 induction of pore-forming protein gene expression in human peripheral blood CD8+ T cells. J Exp Med 171:1269

    Google Scholar 

  90. Smyth MJ, Sutton VR, Kershaw MH, Trapani JA (1996) Xenospecific cytotoxic T lymphocytes use perform- and Fas-mediated lytic pathways. Transplantation 62:1529

    Google Scholar 

  91. Smyth MJ, O'Connor MD, Trapani JA, Kershaw MH, Brinkworth RI (1996) A novel substrate-binding pocket interaction restricts the specificity of the human NK cell-specific serine protease, Met-ase1. Immunol 156:4174

    Google Scholar 

  92. Song Q, Lees-Miller SP, Kumar S, Zhang Z, Chan DW, Smith GC, Jackson SP, Alnemri ES, Litwack G, Khanna KK, Lavin MF (1996) DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J 15:3238

    Google Scholar 

  93. Srinivasula SM, Femandes-Alnemri T, Zangrilli J, Robertson N, Armstrong RC, Wang L, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES (1996) The Ced-3/interleukin lbeta converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2alpha are substrates for the apoptotic mediator CPP32. J Biol Chem 271:27099

    Google Scholar 

  94. Stevens RL, Kamada MM, Serafin WE (1989) Structure and function of the family of proteoglycans that reside in the secretory granules of natural killer cells and other effector cells of the immune response. Curr Top Microbiol Immunol 140:93

    Google Scholar 

  95. Strasser A, Harris AW, Huang DC, Krammer PH, Cory S (1995) Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J 14:6136

    Google Scholar 

  96. Suidan HS, Bouvier J, Schraer S, Stone SR, Monard D, Tschopp J (1994) Granzyme A release upon stimulation of cytotoxic T lymphocytes activates the thrombin receptor on neuronal cells and astrocytes. Proc Natl Acad Sci USA 91:812

    Google Scholar 

  97. Sun J, Bird CH, Sutton V, McDonald L, Coughlin PB, De Jong TA, Trapani JA, Bird PI (1996) A cytosolic granzyme B inhibitor related to the viral apoptotic regulator cytokine response modifier A is present in cytotoxic lymphocytes. J Biol Chem 271:27802

    Google Scholar 

  98. Sun J, Ooms L, Bird CH, Sutton VR, Trapani JA, Bird PI (1997) A new family of 10 murine ovalbumin serpins includes two homologs of protemase inhibitor 8 and two homologs of the granzyme B inhibitor (Protenase inhibitor 9). J Biol Chem 272:15434

    Google Scholar 

  99. Sutton VR, Vaux DL, Trapani JA (1997) Bcl-2 prevents apoptosis induced by perforin and granzyme B, but not that mediated by whole cytotoxic lymphocytes. J Immunol 158:5783

    Google Scholar 

  100. Tak PP, Kummer JA, Hack CE, Daha MR, Smeets TJ, Erkelens GW, Meinders AE, Main PM, Breedveld FC (1994) Granzyme-positive cytotoxic cells are specifically increased in early rheumatoid synovial tissue. Arthritis Rheum 37:1735

    Google Scholar 

  101. Talento A, Nguyen M, Law S, et al (1992) Transfection of mouse cytotoxic T lymphocyte with an antisense granzyme A vector reduces lytic activity. J Immunol 149:4009

    Google Scholar 

  102. Tewari M, Quan LT, O'Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM (1995) Yama/CPP32 beta, a mammalian homolog of CED-3 is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801

    Google Scholar 

  103. Tewari M, Telford WG, Miller RA, Dixit VM (1995) CrmA, a poxvirus-encoded serpin, inhibits cytotoxic T-lymphocyte-mediated apoptosis. J Biol Chem 270:22705

    Google Scholar 

  104. Trapani JA, Kwon BS, Kozak CA, Chintamaneni C, Young JD, Dupont B (1990) Genomic organization of the mouse pore-forming protein (perform) gene and localization to chromosome 10. Similarities to and differences from C9. J Exp Med 171:545

    Google Scholar 

  105. Trapani JA, Jans P, Froelich CJ, Smyth MJ, Sutton VR, Jans D (1997) Cytoplasmic entry of granzyme B is perforin independent, however its nuclear accumulation requires perform and indicates imminent apoptosis. Cell Death & Differentiation (in press)

  106. Tschopp J, Jongeneel A (1988) Cytotoxic T lymphocyte mediated cytolysis. Biochemistry 27:2641

    Google Scholar 

  107. Tschopp J, Nabholtz M (1990) Perforin-mediated target cell lysis by cytotoxic T lymphocytes. Annu Rev Immunol 8:279

    Google Scholar 

  108. Tschopp J, Masson D, Stanley KK (1986) Structural/functional similarity between proteins involved in complement- and cytotoxic T -lymphocyte-mediated cytolysis. Nature 322:831

    Google Scholar 

  109. Tschopp J, Schafer S, Masson D, Peitsch MC, Heusser C (1989) Phosphorylcholine acts as a Ca2+ dependent receptor molecule for lymphocyte perform. Nature 337:272

    Google Scholar 

  110. Uellner R, Jones J, Griffiths GM (1997) Perform is activated by proteolytic cleavage during biosynthesis which reveals a phospholipid binding domain. In: Abstracts of the Proceedings of the Sixth EMBO Workshop on Cell-mediated Cytotoxicity. Kerkrade, The Netherlands, p 25

    Google Scholar 

  111. Van den Broek ME, Kagi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, Melief CJ, Zinkemagel RM, Hengartner H (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184:1781

    Google Scholar 

  112. Vaux DL, Weissman IL, Kim SK (1992) Prevention of programmed cell death inCaenorhabditis elegans by human bcl-2. Science 258:1955

    Google Scholar 

  113. Vaux DL, Haecker G, Strasser A (1994) An evolutionary perspective on apoptosis. Cell 76:777

    Google Scholar 

  114. Walsh CM, Matloubian M, Liu CC, Ueda R, Kurahara CG, Christensen JL, Huang MT, Young JD, Ahmed R, Clark WR (1994) Immune function in mice lacking the perform gene. Proc Natl Acad Sci USA 91:10854

    Google Scholar 

  115. Wood GS, Mueller C, Wamke RA, Weissman IL (1988) In situ localization of HuHF serine protease mRNA and cytotoxic cell-associated antigens in human dermatoses. A novel method for the detection of cytotoxic cells in human tissues. Am J Pathol 133:218

    Google Scholar 

  116. Wu D, Wallen HD, Nunez G (1997) Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 275:1126

    Google Scholar 

  117. Yannelli JR, Sullivan JA, Mandell GL, Engelhard VH (1986) Reorientation and fusion of cytotoxic T lymphocyte granules after interaction with target cells as determined by high resolution cinemicrography. J Immunol 136:377

    Google Scholar 

  118. Young JD, Hengartner H, Podack ER, Cohn ZA (1986). Purification and characterization of a cytolysic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 44:849

    Google Scholar 

  119. Young LH, Joag SV, Zheng LM, Lee CP, Lee YS, Young JD (1990) Perform-mediated myocardial damage in acute myocarditis. Lancet 336:1019

    Google Scholar 

  120. Yuan J, Horvitz HR (1992) The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116:309

    Google Scholar 

  121. Yue CC, Reynolds CW, Henkart PA (1987) Inhibition of cytolysin activity in large granular lymphocyte granules by lipids: evidence for a membrane insertion mechanism of lysis. Mol Immunol 24:647

    Google Scholar 

  122. Zagury D, Bernard J, Thiemess N, Feldman M, Berke G (1975) Isolation and characterization of individual functionally reactive cytotoxic T lymphocytes: conjugation, killing and recycling at the single cell level. Eur J Immunol 5:818

    Google Scholar 

  123. Zalman LS, Brothers MA, Chin FJ, Muller-Eberhard HJ (1986) Mechanism of cytotoxicity of human large granular lymphocytes: relationship of the cytotoxic lymphocyte protein to the ninth component (C9) of human complement. Proc Natl Acad Sci USA 83:5262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trapani, J.A., Jans, D.A. & Sutton, V.R. Lymphocyte granule-mediated cell death. Springer Semin Immunopathol 19, 323–343 (1998). https://doi.org/10.1007/BF00787229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00787229

Keywords

Navigation