Skip to main content
Log in

NO2 formation and its effect on the selective catalytic reduction of NO over Co/ZSM-5

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic performance of Co/ZSM-5 with different metal loadings and of HZSM-5 was compared in the NO + O2, C3H8 + O2, and NO + C3H8 + O2 reactions. It was found that Co/ZSM-5 catalysts containing only isolated cobalt ions in cationic positions are inactive in NO2 formation. To achieve appreciable NO conversion in the SCR process over these catalysts higher reaction temperatures are required. These results make it possible to suggest that NO2 formation is not a prerequisite for the SCR of NO with hydrocarbons over Co/ZSM-5. With increasing Co loading, however, Co/ZSM-5 begins to exhibit activity in NO2 formation. This is explained by the formation of cobalt oxide particles on the zeolite carrier, which are active in the NO2 formation. Increase in NO2 formation strongly enhances catalytic activity in SCR of NO at lower reaction temperatures. Comparison of the C3H8 conversion in the C3H8 + O2 and C3H8 + O2 + NO reactions provides evidence that NO2 activates hydrocarbon molecules resulting in the formation of the reaction intermediates of the SCR process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Iwamoto, in:Advanced Materials '93, II, Trans. Mater. Res. Soc. Jpn., Vol. 15A, eds. H. Aoki et al. (Elsevier, Amsterdam, 1994) p. 117.

    Google Scholar 

  2. M. Iwamoto and N. Mizuno, J. Auto. Eng. 207(1993) 23.

    Google Scholar 

  3. M. Iwamoto, Stud. Surf. Sci. Catal. 84 (1994) 1395.

    Google Scholar 

  4. M. Shelef, Chem. Rev. 95 (1995) 209.

    Google Scholar 

  5. A.T. Bell, L.E. Manzer, N.Y. Chen, V.W. Weekman, L.L. Hedegus and C.J. Pereira, Chem. Eng. Prog. 91 (1995) 26.

    Google Scholar 

  6. J.N. Armor, ASC Symp. Ser. 552 (1994) 2.

    Google Scholar 

  7. Y. Li and J.N. Armor, US Patent 5149512 (1992).

  8. Y. Li and J.N. Armor, Appl. Catal. B1 (1992) L31.

    Google Scholar 

  9. Y. Li and J.N. Armor, Appl. Catal. B2 (1993) 239.

    Google Scholar 

  10. J.N. Armor and T.S. Farris, Appl. Catal. B4(1994) Lll.

    Google Scholar 

  11. Y. Li and J.N. Armor, J. Catal. 150 (1994) 376.

    Google Scholar 

  12. Y. Li, T.L. Slager and J.N. Armor, J. Catal. 150(1994) 388.

    Google Scholar 

  13. D.B. Lukyanov, G. Still, J.L. D'Itri and W.K. Hall, J. Catal. 153(1995) 265.

    Google Scholar 

  14. P.A. Cotton and G. Wilkinson,Advanced Inorganic Chemistry, 4th Ed. (Wiley, New York, 1980) p. 427.

    Google Scholar 

  15. A.D. Cowan, R. Dümpelmann and N.W. Cant, J. Catal. 151 (1995) 356.

    Google Scholar 

  16. T. Beutel, B.J. Adelman, G.-D. Lei and W.M.H. Sachtler, Catal. Lett. 32 (1995) 83.

    Google Scholar 

  17. K.A. Bethke, C. Li, M.C. Kung, B. Yang and H.H. Kung, Catal. Lett. 31 (1995) 287.

    Google Scholar 

  18. C. Yokoyama and M. Misono, J. Catal. 150(1994) 9.

    Google Scholar 

  19. C. Yokoyama and M. Misono, Catal. Lett. 29(1994) 1.

    Google Scholar 

  20. M. Shelef, C.N. Montreuil and H.W. Jen, Catal. Lett. 26 (1994) 277.

    Google Scholar 

  21. M. Sasaki, H. Hamada, Y. Kintaichi and T. Ito, Catal. Lett. 15 (1992) 297.

    Google Scholar 

  22. A. Satsuma, K. Yamada, T. Mori, M. Niwa, T. Hattori and Y. Murakami, Catal. Lett. 31 (1995) 367.

    Google Scholar 

  23. J. Datka, M. Boszar and P. Rymarovicz, J. Catal. 114 (1988) 368.

    Google Scholar 

  24. E. Loeffler, U. Lohse, C. Peuker, C. Oehlmann, L.M. Kustov, V.L. Zholobenko and V.B. Kazanskii, Zeolites 10 (1990) 266.

    Google Scholar 

  25. R.M. Lago, W.O. Haag, R.J. Mikovski, D.H. Olson, S.D. Helling, K.D. Schmitt and G.T. Kerr, Stud. Surf. Sci. Catal. 28 (1986) 677.

    Google Scholar 

  26. S.-J. Jong and S. Cheng, Appl. Catal. 126(1995) 51.

    Google Scholar 

  27. R. Burch and S. Scire, Appl. Catal. B 3 (1994) 295.

    Google Scholar 

  28. C.F. Baes and R.E. Mesmer,Hydrolysis of Cations (Wiley, New York, 1976).

    Google Scholar 

  29. W.-X. Zhang, H. Yahiro, M. Iwamoto and J. Izumi, J. Chem. Soc. Faraday Trans. 91 (1995) 767.

    Google Scholar 

  30. W.-X. Zhang, H. Yahiro, N. Mizuno, J. Izumi and M. Iwamoto, Chem. Lett. (1992) 851.

  31. K. Yogo, M. Ihara, M. Umeno, I. Terasaki, H. Watanabe and E. Kikuchi, Shokubai 35 (1993) 126.

    Google Scholar 

  32. K. Yogo, M. Umeno, H. Watanabe and E. Kikuchi, Catal. Lett. 19(1993) 131.

    Google Scholar 

  33. B.W. Wojciechowski and K.J. Laidler, Can. J. Chem. 38 (1968) 1027.

    Google Scholar 

  34. D.J. Hucknall,Chemistry of Hydrocarbon Combustion (Chapman Hall, London, 1985).

    Google Scholar 

  35. R.J. Meyer and E. Pietsch, eds.,Gmelin Handbuch der Anorganischen Chemie, Vol. 4, Stickstoff (Verlag Chemie, Berlin, 1936) p. 781.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from N.D. Zelinskii Institute of Organic Chemistry, Leninskii Pr. 47, Moscow, Russia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stakheev, A.Y., Lee, C.W., Park, S.J. et al. NO2 formation and its effect on the selective catalytic reduction of NO over Co/ZSM-5. Catal Lett 38, 271–278 (1996). https://doi.org/10.1007/BF00806581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00806581

Keywords

Navigation