Skip to main content
Log in

Formation of the rhodium oxides Rh2O3 and RhO2 in Rh/NaY

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The oxidation states of Rh in NaY supported catalysts have been studied by temperature programmed reduction (TPR). After calcination of the exchanged catalyst to 380°C, both RhO2 and Rh2O3 are identified, besides small amounts of RhO+ and Rh3+. Quantitative reduction is possible for samples calcined at temperatures not exceeding 500°C. Re-oxidation of the reduced samples leads to formation of RhO2 and Rh2O3, with negligible protonolysis to Rh3+. The dioxide prevails after re-oxidation at 320°C, but the sesquioxide after oxidation at 500°C. In the temperature regime where both oxides coexist the reduction of NO with propane is catalyzed even at an O2/C3H8 ratio of 10. Total oxidation of propane reaches 80% at 350°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Beeck, Discuss. Faraday Soc. 8 (1950) 118.

    Google Scholar 

  2. R.L. Pruett, Adv. Organomet. Chem. 17 (1979) 1.

    Google Scholar 

  3. W.M.H. Sachtler, in:Proc. 8th Int. Congr. on Catalysis, Berlin 1984, Vol. I (Dechema, Frankfurt, 1984) p. 151.

    Google Scholar 

  4. K.T. Taylor, Catal. Rev. -Sci. Eng. 35 (1993) 457.

    Google Scholar 

  5. T.T.T. Wong, A. Yu. Stakheev and W.M.H. Sachtler, J. Phys. Chem. 96 (1992) 7733.

    Google Scholar 

  6. D. Tomczak, V. Zholobenko, H. Treviño, G. Lei and W.M.H. Sachtler, in:10th Int. Zeolite Conf., Garmisch-Partenkirchen, 17–22 July 1994, submitted.

  7. H. van Brabant, R.A. Schoonheydt and J. Pelgrims, in:Metal Microstructures in Zeolite, eds. P.A. Jacobs, N.I. Jaeger, P. Jirů and G. Schulz-Eckloff (Elsevier, Amsterdam, 1982) p. 61.

    Google Scholar 

  8. J.W. Niemantsverdriet,Spectroscopy in Catalysis (Verlag Chemie, Weinheim, 1993) p. 220.

    Google Scholar 

  9. L.-F. Rao, A. Fukuoka, N. Kosugi, H. Kuroda and M. Ichikawa, J. Phys. Chem. 94 (1990) 5317.

    Google Scholar 

  10. A.D. Logan, E.J. Braunschweig, A.K. Datye and D.J. Smith, Ultramicroscopy 31 (1989) 132.

    Google Scholar 

  11. O. Muller and R. Roy, J. Less-Common Metals 16 (1968) 129.

    Google Scholar 

  12. Y. Li and W.K. Hall, J. Catal. 129 (1991) 202.

    Google Scholar 

  13. W.K. Hall and J. Valyon, Catal. Lett. 15 (1992) 311.

    Google Scholar 

  14. T.T.T. Wong and W.M.H. Sachtler, J. Catal. 141 (1993) 407.

    Google Scholar 

  15. H.F.J. van't Blik, PhD Thesis, University of Technology, Eindhoven, The Netherlands (1984) p. 145.

    Google Scholar 

  16. R.R. Gatte and J. Phillips, J. Phys. Chem. 91 (1987) 5968.

    Google Scholar 

  17. S.T. Homeyer and W.M.H. Sachtler, J. Catal. 118 (1989) 266.

    Google Scholar 

  18. J. d'Itri and W.M.H. Sachtler, Appl. Catal. B2 (1993) L7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schünemann, V., Adelman, B. & Sachtier, W.M.H. Formation of the rhodium oxides Rh2O3 and RhO2 in Rh/NaY. Catal Lett 27, 259–265 (1994). https://doi.org/10.1007/BF00813911

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00813911

Keywords

Navigation