Skip to main content
Log in

Study of the laws governing the change in the plastic zone at the crack tip and characteristics of the fracture toughness of metallic materials in relation to their structure (survey)

  • Published:
International Applied Mechanics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Ansell, "Mechanical properties of two-phase alloys," in: Physical Metallurgy [Russian translation], Vol. 3, Mir, Moscow (1968), pp. 327–368.

    Google Scholar 

  2. M. P. Arbuzov, "X-ray diffraction study of the carbide phase in steels," Vopr. Fiz. Met. Metalloved., No. 3, 3–27 (1952).

  3. Kh. Blyumenauer and B. Zutkhoff, "X-ray diffraction determination of the stress distribution on specimens with a fatigue crack," Probl. Prochn., No. 3, 18–20 (1981).

  4. J. Wirtman and J. R. Wirtman, "Mechanical properties directly dependent on temperature," in: Physical Metallurgy [Russian translation], Vol. 3, Metallurgiya, Moscow (1987), pp. 112–156.

    Google Scholar 

  5. V. I. Vladimirov, Physical Nature of the Fracture of Metals [in Russian], Metallurgiya, Moscow (1984).

    Google Scholar 

  6. S. B. Nizhnik, S. P. Doroshenko, V. P. Ostrovskaya, and G. I. Usikova, "Effect of the conditions of thermomechanical strengthening on the formation of the high-ductility states of maraging steels," Obrab. Met. Davleniem,12, 49–53 (1985).

    Google Scholar 

  7. T. M. Golovinskaya, E. A. Dmitrieva, A. A. Kaminskii, and T. V. Rudis, "Fracture toughness and structure of martensitic steels," Fiz. Khim. Mekh. Mater.,20, No. 6, 70–73 (1984).

    Google Scholar 

  8. T. M. Golovinskaya, E. A. Dmitrieva, A. A. Kaminskii, and T. V. Rudis, "Fracture toughness of heat-resistant austenitic steel," Fiz. Khim. Mekh. Mater.,22, No. 4, 107–109 (1986).

    Google Scholar 

  9. S. V. Gladkovskii, N. V. Zvigintsev, and A. A. Kruglov, "Effect of structural factors on the fracture toughness of high-strength maraging steels," in: Structure of Dislocations and Mechanical Properties of Metals and Alloys [in Russian], Izd-vo UPI, Sverdlovsk (1990), pp. 167–169.

    Google Scholar 

  10. T. M. Golovinskaya and A. A. Kaminskii, "Dependence of the fracture characteristics of structural steel on heat treatment conditions," Prikl. Mekh.,18, No. 1, 116–119 (1982).

    Google Scholar 

  11. T. M. Golovinskaya and A. A. Kaminskii, "Laws governing fracture toughness and grain-boundary embrittlement," Dopov. Akad. Nauk Ukr. RSR, No. 1, 35–38 (1983).

  12. T. M. Golovinskaya, A. A. Kaminskii, and T. V. Rudis, "Relationship between the fracture toughness and yield point of structural steels," Summary of Documents of the Third All-Union Conference "Improving the Performance and Repair of Ship Hulls," Kaliningrad (1984), pp. 194–195.

  13. T. M. Golovinskaya, A. A. Kaminskii, T. V. Rudis, and G. I. Usikova, "Fracture toughness and the structure of maraging steels," Summary of Documents of the Second Symposium on the Fracture of Materials, Vol. 2, Zhitomir (1985), pp. 71–72.

  14. M. I. Gol'dstein, S. V. Grachev, and Yu. G. Veksler, Special Steels [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  15. M. I. Gol'dshtein and V. M. Farber, Dispersion-Hardening of Steel [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  16. V. Dal' and V. Anton, Static Strength and Fracture Mechanics of Steels, Metallurgiya, Moscow (1986).

    Google Scholar 

  17. S. P. Doroshenko, S. B. Nizhnik, and V. P. Ostrovskaya, "Structure of the plastic zone at the crack tip and the life of steel under low-cycle loading," Probl. Prochn., No. 8, 23–32 (1993).

  18. Katsuyu Eshikawa, "Effect of quenching temperature and carbon content on the fracture toughness of steel," Tetsu To Hagane,66, No. 4, 519–525 (1980).

    Google Scholar 

  19. V. S. Ivanova and A. A. Shanyavskii, Quantitative Fractography [in Russian], Metallurgiya, Chelyabinsk (1988).

    Google Scholar 

  20. A. A. Kaminskii and V. N. Bastun, Strain-Hardening and Fracture of Metals under Variable Loads [in Russian], Nauk. Dumka, Kiev (1985).

    Google Scholar 

  21. A. A. Kaminskii and V. N. Bastun, "Laws governing the elastoplastic deformation and fracture of strain-hardening isotropic metals in a complex stress state," Prikl. Mekh.,29, No. 3, 3–23 (1993).

    Google Scholar 

  22. A. A. Kaminskii and G. V. Galatenko, "Study of the growth of fatigue cracks in materials with strengthening," Prikl. Mekh.,20, No. 4, 54–60 (1984).

    Google Scholar 

  23. A. A. Kaminskii, G. I. Usikova, and E. A. Dmitrrieva, "Study of the strain state of the plastic zone at the crack tip," Summary of Documents of the XII Scientific-Technical Conference on Thermal Microscopy, "Structure and Strength of Materials in a Broad Range of Temperatures," Part 1, Kaunas (1989), pp. 58–59.

  24. A. A. Kaminskii, G. I. Usikova, S. P. Doroshenko, et al., "Development of the plastic zone at the crack tip in relation to the loading conditions," Summary of Documents of the YI All-Union Conference "Physics of Fracture," Part 1, Kiev (1989), p. 172.

  25. A. A. Kaminskii, G. I. Usikova, and E. A. Dmitrieva, "Experimental study of the distribution of plastic strains in the neighborhood of the crack tip during static loading," Prikl. Mekh.,30, No. 11, 69–75 (1994).

    Google Scholar 

  26. G. V. Klevtsov, "Kinetics of formation of the plastic zone at the crack tip in the fracture of structural materials in plane stress and plane strain," Probl. Prochn., No. 4, 50–56 (1993).

  27. S. E. Kovchik and E. M. Morozov, in: Characteristics of the Short-Term Fracture Toughness of Materials and Methods of Determining Them: Handbook [in Russian], Vol. 3, Nauk. Dumka, Kiev (1988).

    Google Scholar 

  28. H. Conrad, "Model of strain-hardening to explain the effect of grain size on the flow stress in metals," in: Ultrafine Grains in Metals, Metallurgiya, Moscow (1973), pp. 206–219.

    Google Scholar 

  29. A. Ya. Krasovskii, Brittleness of Metals at Low Temperatures [in Russian], Nauk. Dumka, Kiev (1980).

    Google Scholar 

  30. J. M. Krafft and J. R. Irwin, "Considerations on crack propagation rate," in: Applied Problems of Fracture Toughness [Russian translation], Mir, Moscow (1968), pp. 187–209.

    Google Scholar 

  31. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-Ray Diffraction, and Electron Microscopy [in Russian], Metallurgiya, Moscow (1982).

    Google Scholar 

  32. V. G. Laz'ko, V. E. Laz'ko, and B. M. Ovsyannikov, "Fracture toughness of high-strength steel," Metalloved. Term. Obrab. Met., No. 4, 27–31 (1973).

  33. M. Ya. Leonov and V. V. Panasyuk, "Crack growth in solids," Prikl. Mekh.,5, No. 4, 391–401 (1959).

    Google Scholar 

  34. L. I. Lysak and B. I. Nokolin, Physical Principles of the Heat Treatment of Steel [in Russian], Tekhnika, Kiev (1975).

    Google Scholar 

  35. A. I. Lyal'ko and E. S. Ovchinnikov, "Relationship between fracture toughness characteristics and the properties of steel determined in the static tension of smooth specimens," in: New Methods of Testing Metals [in Russian], Vol. 8, Znanie, Moscow (1982), pp. 82–85.

    Google Scholar 

  36. M. A. Makhutov, Strain-Based Criteria of Fracture and the Strength Design of Structural Elements [in Russian], Mashinostroenie, Moscow (1981).

    Google Scholar 

  37. V. B. Morrison and R. L. Miller, "Ductility of alloys with ultrafine grains," in: Ultrafine Grains in Metals [Russian translation], Metallurgiya, Moscow (1973), pp. 181–206.

    Google Scholar 

  38. S. B. Nizhnik, "Stress—strain curves of stable and metastable two-phase steel in relation to structure and the volume content of the phases," Probl. Prochn., No. 3, 57–61 (1980).

  39. S. B. Nizhnik, "Structural sensitivity of the fracture toughness characteristic KIc," Probl. Prochn., No. 8, 17–23 (1994).

  40. S. B. Nizhnik, O. G. Miklukhin, and N. N. Fortunatova, "Modeling the stress—strain curves of metastable austenitic steels with allowance for the character of alloying," Probl. Prochn., No. 11, 9–14 (1988).

  41. S. B. Nizhnik and V. P. Ostrovskaya, "Features of the strain-hardening of metastable austenitic—martensitic steels," Probl. Prochn., No. 6, 23–27 (1991).

  42. S. B. Nizhnik and N. I. Chernyak, "Stress—strain curves and the structure of stainless steels of the transitional class," Probl. Prochn., No. 4, 70–73 (1974).

  43. S. Norman and N. Stoloff, "Effect of alloying on fracture characteristics," in: Fracture [Russian translation], Vol. 6, Metallurgiya, Moscow (1976), pp. 11–89.

    Google Scholar 

  44. V. N. Rudenko, E. S. Istomina, B. I. Koval'chuk, and S. B. Nizhnik, "Effect of preliminary deformation on the yield point of austenitic steel in low-temperature loading," Probl. Prochn., No. 8, 48–51 (1983).

  45. V. N. Bastun, S. B. Nizhnik, V. P. Ostrovskaya, and T. Ya. Mel'nikova, "Effect of structure on the fracture toughness of austenitic steel during cyclic loading," Fiz. Khim. Mekh. Mater.,25, No. 2, 53–59 (1989).

    Google Scholar 

  46. A. A. Kaminskii, V. N. Bastun, S. B. Nizhnik, V. P. Ostrovskaya, and S. P. Doroshenko, "Structure of the tip region in an unstable material during low-cycle loading," Prikl. Mekh.,27, No. 5, 89–94 (1991).

    Google Scholar 

  47. A. S. Ostsemin, S. A. Deniskin, and L. L. Sitnikov, "Determination of the stress-intensity factor by photoelastic modeling," Probl. Prochn., No. 1, 33–37 (1990).

  48. V. V. Panasyuk, A. E. Andreikiv, and S. E. Kovchik, "Determination of the KIc of structural materials through their mechanical characteristics and a structural parameter," Fiz. Khim. Mekh. Mater.,13, No. 2, 120–122 (1977).

    Google Scholar 

  49. V. V. Panasyuk, A. E. Andreikiv, and V. Z. Parton, in: Principles of Fracture Mechanics: Handbook [in Russian], Vol. 1, Nauk. Dumka, Kiev (1988).

    Google Scholar 

  50. V. Z. Parton and E. M. Morozov, Mechanics of Elastoplastic Fracture [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  51. G. A. Prantskevichyus, "Determination of the fracture toughness of ductile materials through their mechanical characteristics and a structural parameter," Fiz. Khim. Mekh. Mater.,26, No. 4, 66–69 (1980).

    Google Scholar 

  52. O. N. Romaniv, A. N. Tkach, Ya. N. Gladkii, and Yu. V. Zima, "Use of overheating in quenching to improve the fracture toughness of high-strength steels," Fiz. Khim. Mekh. Mater.,12, No. 5, 41–48 (1976).

    Google Scholar 

  53. M. N. Georgiev, I. Ya. Mezhova, Ya. P. Strok, and N. K. Shaurova, "Use of x-ray fractography to study the laws governing the fracture of metals," Zavod. Lab., No. 8, 54–57 (1981).

  54. J. Rice, "Mathematical methods and fracture mechanics," in: Fracture [Russian translation], Vol. 2, Mir, Moscow (1975), pp. 204–249.

    Google Scholar 

  55. O. N. Romaniv, Fracture Toughness of Structural Steels [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  56. O. N. Romaniv, A. S. Krys'kiv, and A. N. Tkach, "Certain cases of different structural sensitivities of impact toughness and fracture toughness," Fiz. Khim. Mekh. Mater.,14, No. 6, 64–71 (1978).

    Google Scholar 

  57. S. A. Saltykov, Stereometric Metallography [Russian translation], Metallurgiya, Moscow (1970).

    Google Scholar 

  58. S. V. Safronov and M. L. Bernshtein, "Effect of thermomechanical strengthening on the fracture toughness of steels 40S2Kh and 60S2Kh," Fiz. Khim. Mekh. Mater.,17, No. 1, 61–64 (1981).

    Google Scholar 

  59. S. B. Nizhnik, B. I. Koval'chuk, E. S. Istomina, and E. A. Dmitrieva, "Structure and mechanical properties of austenitic steel in low-temperature deformation with linear and plane stress states," Probl. Prochn., No. 1, 81–86 (1978).

  60. T. M. Golovinskaya, S. B. Nizhnik, G. I. Usikova, and N. I. Chernyak, "Structure and mechanical properties of maraging steel during thermal strengthening," Izv. Akad. Nauk SSSR Metally, No. 3, 183–187 (1980).

  61. V. I. Trefilov, Yu. V. Mil'man, and S. A. Firstov, Physical Principles of the Strength of Refractory Metals [in Russian], Nauk. Dumka, Kiev (1975).

    Google Scholar 

  62. V. I. Trefilov, V. F. Moiseev, and E. P. Pechkovskii, Strain-Hardening and Fracture of Polycrystalline Metals [in Russian], Nauk. Dumka, Kiev (1987).

    Google Scholar 

  63. Yukio Tukano, "Stability of a dispersed austenite phase in Ni-steel and fracture toughness," Tetsuto Hagane, No. 11, 361–367 (1979).

  64. G. I. Usikova, "Effect of structural factors on the fracture mechanism and fracture toughness of maraging steel Kh11N10M2T," Submitted to GNTB Ukrainy (Ukrainian State Scientific and Technical Library) 10.08.94, No. 1592, Kiev (1994).

  65. N. M. Fonshtein, A. A. Efimov and E. N. Zhuk, "Study of the effect of overheating on the fracture toughness of high-strength steel," Fiz. Khim. Mekh. Mater.,16, No. 1, 112–114 (1980).

    Google Scholar 

  66. R. W. Hertzberg, Deformation and Fracture of Structural Materials [Russian translation], Metallurgiya, Moscow (1989).

    Google Scholar 

  67. G. P. Cherepanov, "Simulation of microcracks and dislocations," Prikl. Mekh.,23, No. 12, 67–81 (1987).

    Google Scholar 

  68. G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  69. G. P. Cherepanov, "On the construction of fracture mechanics," Prikl. Mekh.,26, No. 6, 3–13 (1990).

    Google Scholar 

  70. A. A. Kaminskii, G. I. Usikova, E. E. Kurchakov, E. A. Dmitrieva, and S. P. Doroshenko, Probl. Mashinostroenie i Avtomatizatsii, No. 6, 79–85 (1991).

  71. A. A. Kaminskii and D. A. Gavrilov, Avt. Svid. No. 853,474 (USSR), "Method of determining the fracture toughness of structural materials," Byul. Izobr., No. 29 (1981).

  72. D. A. Gavrilov, T. M. Golovinskaya, A. A. Kaminskii, and V. A. Markov, Avt. Svid. No. 1,017,955 (USSR), "Method of symmetric deformation of specimens," Byul. Izobr., No. 18 (1983).

  73. A. A. Kaminskii, D. A. Gavrilov, G. V. Galatenko, and V. F. Zhovanik, Avt. Svid. No. 1,392,430 (USSR), "Method of determining the fracture toughness of a material," Byul. Izobr., No. 6 (1988).

  74. D. A. Gavrilov, T. M. Golovinskaya, A. A. Kaminskii, and T. V. Rudis, Avt. Svid. No. 1,499,152 (USSR), "Method of testing structural materials for fracture toughness," Byul. Izobr., No. 29 (1989).

  75. S. P. Doroshenko, S. B. Nizhnik, and V. P. Ostrovskaya, Interim Patent No. 93,006,532. Priority from 17.06.1993 (Ukraine). "Method of evaluating strains in the neck region."

  76. A. Beukel, "Grain size dependence of the dislocation in cold worked metals," Scr. Metall.,12, No. 9, 809–813 (1978).

    Google Scholar 

  77. Vdo Bruch and Erhard Hornbogen, "Festigkeit von drei aushartbaren ferritischen Stahlen," Arch. Eisenhuttenwes.,49, No. 8, 409–412 (1978).

    Google Scholar 

  78. A. H. Cottrell, "Theory of brittle fracture in steel and similar metals," Trans. Metall. Soc. AIME,212, No. 2, 192–203 (1958–1959).

    Google Scholar 

  79. D. A. Curry, "Grain size dependence of cleavage fracture toughness in mild steel," Nature,276, No. 5683, 50–51 (1978).

    Google Scholar 

  80. J. Joo, V. Banfaru, M. Rao, and G. Thomas, Met. Prog.,116, No. 4, 66–70 (1979).

    Google Scholar 

  81. D. S. Dugdale, "Yielding of steel sheets containing slits," J. Mech. Phys. Solids,8, No. 2, 100–104 (1960).

    Google Scholar 

  82. G. T. Hahn and A. R. Rosenfield, "Sources of fracture toughness," Appl. Phenomena in Titanium Alloys. Am. Soc. Test Mater. Spec. Tech. Publ., No. 432, 5–32 (1968).

  83. H. Huthmann and O. Gossmann, "Mechanisches Verhalten des Austenits 316L Nod. bei vorhandener Anfangsriss," Anwendung des Engineering Treatment Models (ETM) auf Kompaltproben GKSS. [Rept]. No. E35 (1989), pp. 55–130.

  84. G. R. Irwin and D. Washington, "Analysis of stresses and strain near the end of a crack traversing a plate," J. Appl. Mech.,24, No. 3, 361–364 (1957).

    Google Scholar 

  85. H. Iohansson, "Studies on microstructure related toughness problems in steel by the application of linear elastic fracture mechanics," Acta Univ. Ups., No. 487, 12 (1978).

  86. J. F. Knott, "The science and engineering of fracture," Fract. Mech.: Successes and Probl.: 8th Int. Conf. Fract., June 8–14, 1993, Kiev; Collect. Abstr., Pt. 2, Lvov (1993), p. 690.

  87. J. F. Knott, "The science and engineering of fracture," Fiz. Khim. Mekh. Mater.,29, No. 3, 42–65 (1993).

    Google Scholar 

  88. A. J. Krasowsky and G. Pluvinage, "Structure parameters governing fracture toughness of engineering materials," Fiz. Khim. Mekh. Mater.,29, No. 3, 113–124 (1993).

    Google Scholar 

  89. A. J. Krasowsky and G. Pluvinage, "Structure parameters governing fracture toughness of engineering materials," Fiz. Khim. Mekh. Mater.,29, No. 3, 113–124 (1993).

    Google Scholar 

  90. T. Kunio and H. Suzuki, "An effect of the combined microstructural size on the tensile fracture strength of two-phase carbon steel," Adv. Res. Strength and Fract. Mater.: 4th Int. Conf. Fract., 1977, Waterloo; New York (1978), pp. 23–32.

  91. Y. C. Lam, J. R. Griffiths, and B. D. Chen, "Retardation of fatigue crack growth by a thermo-mechanical method," Fract. Mech.: Successes and Probl.: 8th Int. Conf. Fract., June 8–14, 1993, Kiev; Collect. Abstr., Pt. 1, Lvov (1993), p. 167–168.

  92. B. Marandet and G. Sang, "Evaluation de la tenaite a partir d'essais mecanigues simple," Circ. Inform. Techn. Cent. Doc. Sider,35, No. 9, 1639–1655 (1978).

    Google Scholar 

  93. K. J. Miller, "Some recent advances in metal fatigue," Fract. Mech.: Successes and Probl.: 8th Int. Conf. Fract., June 8–14, 1993, Kiev; Collect. Abstr., Pt. 1, Lvov (1993), p. 149.

  94. E. Orowan, "Conditions for dislocation passage of precipitates," Stress in Metals and Alloys: Proc. Int. Symp., London (1948), pp. 451–454.

  95. S. P. Rawal and J. Gurland, "Observations on the effect of cementite particles on the fracture of spheroidized carbon steels," Adv. Res. Strength and Fract. Mater.: 4th Int. Conf. Fract., 1977, Waterloo; New York (1978), pp. 41–47.

  96. J. R. Rice and M. A. Johnston, "On the large geometric change at the crack tip," in: Inelastic Behavior of Solids, McGraw-Hill, New York (1970), pp. 641–655.

    Google Scholar 

  97. J. R. Rice and G. F. Rosengren, "Plane strain deformation near a crack tip in a power-law hardening material," J. Mech. Phys. Solids,16, No. 1, 1–12 (1968).

    Google Scholar 

  98. A. Rosen, R. Tabo, and T. Kfer, "Tensile properties of metastable stainless steels," J. Mat. Sci.,7, No. 8, 870–876 (1972).

    Google Scholar 

  99. K. Y. Schwalbe, A. Comee, and J. Kalinowski, "Mechanishes Verhalten des Austenits 316L Mod bei einem vorhandener Angangsriss," Anwendung des Engineering Treatment Models (ETM) auf Kompaltproben GKSS. [Rept]. No. E35 (1989), pp. 1–54.

  100. A. N. Stroh, "The cleavage of metal single crystals," Adv. Phys.,6, No. 2, 418–423 (1957).

    Google Scholar 

Download references

Authors

Additional information

S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 31, No. 10, pp. 3–27, October, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaminskii, A.A., Nizhnik, S.B. Study of the laws governing the change in the plastic zone at the crack tip and characteristics of the fracture toughness of metallic materials in relation to their structure (survey). Int Appl Mech 31, 777–798 (1995). https://doi.org/10.1007/BF00846878

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00846878

Keywords

Navigation