Skip to main content
Log in

A subgrid parameterization of orographic precipitation

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

Estimates of the impact of global climate change on land surface hydrology require climate information on spatial scales far smaller than those explicitly resolved by global climate models of today and the foreseeable future. To bridge the gap between what is required and what is resolved, we propose a subgrid-scale parameterization of the influence of topography on clouds, precipitation, and land surface hydrology. The parameterization represents subgrid variations in surface elevation in terms of probability distributions of discrete elevation classes. Separate cloud, radiative, and surface processes are calculated for each elevation class. Rainshadow effects are not treated by the parameterization; they have to be explicitly resolved by the host model. The simulated surface temperature, precipitation, and snow cover for each elevation class are distributed to different geographical locations according to the spatial distribution of surface elevation within each grid cell.

The subgrid parameterization has been implemented in the Pacific Northwest Laboratory's climate version of the Penn State/NCAR Mesoscale Model. The scheme is evaluated by driving the regional climate model with observed lateral boundary conditions for the Pacific Northwest and comparing simulated fields with surface observations. The method yields more realistic spatial distributions of precipitation and snow cover in mountainous areas and is considerably more computationally efficient than achieving high resolution by the use of nesting in the regional climate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A., Hsie, E. Y., Kuo, Y. H., 1987: Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4).National Center for Atmospheric Research Technical Note, NCAR/TN-282 + STR, Boulder, CO.

  • Avissar, R., 1992: Conceptual aspects of a statistical-dynamical approach to respresent landscape subgrid-scale heterogeneities in models.J. Geophys. Res. 97, 2729–2742.

    Google Scholar 

  • Avissar, R., Pielke, R. A., 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impacts on regional meteorology.Mon. Wea. Rev. 107, 2113–2136.

    Google Scholar 

  • Barros, A. P., Lettenmaier, D. P., 1993a: Dynamic modeling of orographically-induced precipitation.Rev. Geophys., (in Press).

  • Barros, A. P., Lettenmaier, D. P., 1993b: Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas.Mon. Wea. Rev. 121, 1195–1214.

    Google Scholar 

  • Bergeron, T., 1960: Problems and methods of rainfall investigation.Geophysical Monographs 5, 5–30.

    Google Scholar 

  • Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization.Quart. J. Roy. Meteor. Soc. 99, 178–196.

    Google Scholar 

  • Browning, K. A., 1980: Structure, mechanism and prediction of orographically-enhanced rain in Britain. Orographic effects in planetary flows.Global Atmospheric Research Program Publications Series 23, 88–108.

    Google Scholar 

  • Burns, J. I., 1953: Small-scale topographic effects on precipitation distribution in San Dimas experimental forest.Trans. Am. Geophys. Union 34, 761–768.

    Google Scholar 

  • Burns, J. I., Pardoe, C. W., Hill, F. F., 1975: The nature of orographic rain at wintertime cold fronts.Quart. J. Roy. Meteor. Soc. 101, 333–352.

    Google Scholar 

  • Choularton, T. W., Perry, S. J., 1986: A model of the orographic enhancement of snowfall by the seeder-feeder mechanism.Quart. J. Roy. Meteor. Soc. 112, 335–345.

    Google Scholar 

  • Corradini, C., Melone, F., 1989: Spatial structure of rainfall in mid-latitude cold front systems.J. Hydrology 105, 297–316.

    Google Scholar 

  • Cotton, W. R., Anthes, R. A., 1989:Storm and Cloud Dynamics. New York: Academic Press, 883pp.

    Google Scholar 

  • Cotton, W. R., Tripoli, G. J., Rauber, R. M., Mulvihill, E. A., 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall.J. Climate Appl. Meteor. 25, 1658–1680.

    Google Scholar 

  • Daly, C., Neilson, R. P., Phillips, D. L., 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain.J. Appl. Meteor. 33, 140–158.

    Google Scholar 

  • Dickinson, R. E., Errico, R. M., Giorgi, F., Bates, G. T., 1989: A regional climate model for the Western U.S.Climatic Change 15, 383–422.

    Google Scholar 

  • Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J., 1993: Biosphere-Atmosphere Transfer scheme (BATS) Version le as coupled to the NCAR Community Climate Model.National Center for Atmospheric Research Technical Note, NCAR/TN-387 + STR, Boulder, CO.

  • Elliott, R. D., Shaffer, R. W., 1962: The development of quantitative relationships between orographic precipitation and air-mass parameters for use in forecasting and cloud seeding evaluation.J. Appl. Meteor. 1, 218–228.

    Google Scholar 

  • Fraser, A. B., Easter, R. C., Hobbs, P. V., 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain: Part I. Airflow model.J. Atmos. Sci. 30, 801–812.

    Google Scholar 

  • Ghan, S. J., Easter, R. C., 1992: Computationally efficient approximations to stratiform cloud parameterization.Mon. Wea. Rev. 120, 1572–1582.

    Google Scholar 

  • Guo, Y.-R., Chen, S., 1993: Terrain and land use for the fifth-generation Penn State/NCAR Mesoscale Modeling System (MM5).National Center for Atmospheric Research Technical Note, NCAR/TN-397 + IA, Boulder, CO.

  • Giorgi, F., Hostetler, S. W., Brodeur, C. S., 1994: Analysis of the surface hydrology in a regional climate model.Quart. J. Roy. Meteor. Soc. 120, 161–183.

    Google Scholar 

  • Giorgi, F., Bates, G. T., Nieman, S. J., 1993: The multiyear surface climatology of a regional atmospheric model over the Western United States.J. Climate 6, 75–95.

    Google Scholar 

  • Giorgi, F., Bates, G. T., Nieman, S. J., 1992: Simulation of the arid climate of the Southern Great Basin using a regional climate model.Bull. Amer. Meteor. Soc. 73, 1807–1822.

    Google Scholar 

  • Giorgi, F., Bates, G. T., 1989: On the climatological skill of a regional model over complex terrain.Mon. Wea. Rev. 117, 2325–2347.

    Google Scholar 

  • Grell, G., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations.Mon. Wea. Rev. 121, 764–787.

    Google Scholar 

  • Grell, G., Dudhia, J., Stauffer, D. R., 1993: A description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5).NCAR Technical Note, NCAR/TN-398 + IA.

  • Grotch, S. L., MacCracken, M. C., 1991: The use of General Circulation Models to predict regional climatic change.J. Climate 4, 286–303.

    Google Scholar 

  • Hevesi, J. A., Istok, J. D., Flint, A. L., 1992a: Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: Structural analysis.J. Appl. Meteor. 31, 661–676.

    Google Scholar 

  • Hevesi, J. A., Flint, A. L., Istok, J. D., 1992b: Precipitation estimation in mountainous terrain using multivariate geostatistics. Part II: Isohyetal maps.J. Appl. Meteor. 31, 677–688.

    Google Scholar 

  • Hill, F. F., Browning, K. A., Bader, M. J., 1981: Radar and raingauge observations of orographic rain over South Wales.Quart. J. Roy. Meteor. Soc. 107, 643–670.

    Google Scholar 

  • Hobbs, P. V., Easter, R. C., Fraser, A. B., 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain: Part II: Microphysics.J. Atmos. Sci. 30, 813–823.

    Google Scholar 

  • IPCC, 1990:Climate Change: The Intergovernmental Panel on Climate Change ( IPCC ) Scientific Assessment. Cambridge: Cambridge University Press, 364 pp.

    Google Scholar 

  • Kiehl, J. T., Wolski, R. J., Briegleb, B. P., Ramanathan, V., 1987: Documentation of radiation and cloud routines in the NCAR Community Climate Model (CCM1).National Center for Atmospheric Research Technical Note, NCAR/TN-288 + IA, Boulder, CO.

  • Pierrehumbert, R. T., Wyman, B., 1985: Upstream effects of mesoscale mountains.J. Atmos. Sci. 42, 977–1003.

    Google Scholar 

  • Sheppard, P. S., 1956: Airflow over mountains.Quart. J. Roy. Meteor. Soc. 82, 528–529.

    Google Scholar 

  • Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain.Tellus 32, 348–364.

    Google Scholar 

  • Smith, R. B., 1988: Linear theory of hydrostatic flow over an isolated mountain in isoteric coordinates.J. Atmos. Sci. 45, 3889–3896.

    Google Scholar 

  • Smith, R. B., 1989: Mountain induced stagnation points in hydrostatic flows.Tellus 41A, 270–274.

    Google Scholar 

  • Smolarkiewicz, P. K., Rotunno, R., 1989: Low Froude number flow past three dimensional obstacles. Part I: Baroclinically generated lee vortices.J. Atmos. Sci. 46, 1154–1164.

    Google Scholar 

  • Smolarkiewicz, P. K., Rotunno, R., 1990: Low Froude number flow past three dimensional obstacles. Part II: Upwind flow reversal zone.J. Atmos. Sci. 47, 1498–1511.

    Google Scholar 

  • Spreen, W. C., 1947: Determination of the effect of topography upon precipitation.Trans. Am. Geophys. Union 28, 285–290.

    Google Scholar 

  • Storebo, P. B., 1975: Small scale topographical influences on precipitation.Tellus 28, 45–59.

    Google Scholar 

  • Sumner, G., 1988:Precipitation Process and Analysis. New York: John Wiley & Sons, 455 pp.

    Google Scholar 

  • Taylor, K. E., Ghan, S. J., 1992: An analysis of cloud liquid water feedback and global climate sensitivity in a General Circulation Model.J. Climate 5, 907–919.

    Google Scholar 

  • Wallace, J. M., Hobbs, P. V., 1977:Atmospheric Science: An Introductory Survey. New York: Academic Press, 467 pp.

    Google Scholar 

  • Williamson, D. L., Kiehl, J. T., Ramanathan, V., Dickinson, R. E., Hack, J. J., 1987: Description of NCAR Community Climate Model (CCM1).NCAR Technical Note, NCAR/TN-285 + STR.

  • Zhang, D. L., Anthes, R. A., 1982: A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data.J. Appl. Meteor. 21, 1594–1609.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 17 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, L.R., Ghan, S.J. A subgrid parameterization of orographic precipitation. Theor Appl Climatol 52, 95–118 (1995). https://doi.org/10.1007/BF00865510

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00865510

Keywords

Navigation