Skip to main content
Log in

Oxygen control inRhizobium

  • Research Articles
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Rhizobia are gram-negative bacteria with two distinct habitats: the soil rhizosphere in which they have a saprophytic and, usually, aerobic life and a plant ecological niche, the legume nodule, which constitutes a microoxic environment compatible with the operation of the nitrogen reducing enzyme nitrogenase. The purpose of this review is to summarize the present knowledge of the changes induced in these bacteria when shifting to a microoxic environment. Oxygen concentration regulates the expression of two major metabolic pathways: energy conservation by respiratory chains and nitrogen fixation. After reviewing the genetic data on these metabolic pathways and their response to oxygen we will put special emphasis on the regulatory molecules which are involved in the control of gene expression. We will show that, although homologous regulatory molecules allow response to oxygen in different species, they are assembled in various combinations resulting in a variable regulatory coupling between genes for microaerobic respiration and nitrogen fixation genes. The significance of coordinated regulation of genes not essential for nitrogen fixation with nitrogen fixation genes will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agron PG, Ditta GS & Helinski DR (1993) Oxygen regulation ofnifA transcription in vitro. Proc. Natl. Acad. Sci. USA 90: 3506–3510

    Google Scholar 

  • Aguilar OM, Reilander H, Arnold W & Pühler A (1987)Rhizobium meliloti nifN (fixF) gene is part of an operon regulated by anifA-dependent promoter and codes for a polypeptide homologous to thenifK gene product. J. Bacteriol. 169: 5393–5400

    Google Scholar 

  • Albright CM, Huala E & Ausubel FM (1989) Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Ann. Rev. Genet 23: 311–336

    Google Scholar 

  • Anthamatten D & Hennecke H (1991) The regulatory status of thefixL- andfixJ- like genes inBradyrhizobium japonicum may be different from that inRhizobium meliloti. Mol. Gen. Genet. 225: 38–48

    Google Scholar 

  • Anthamatten D, Scherb B & Hennecke H (1992) Characterization of afixLJ regulatedBradyrhizobium japonicum gene sharing similarity with theEscherichia coli fnr andRhizobium meliloti fixK genes. J. Bacteriol. 174: 2111–2120

    Google Scholar 

  • Appleby CA (1984) Leghemoglobin andRhizobium respiration. Ann. Rev. Plant. Physiol. 35: 443–478

    Google Scholar 

  • Arigoni F, Kaminski PA, Hennecke H & Elmerich C (1991) Nucleotide sequence of thefixABC region ofAzorhizobium caulinodans ORS571. Similarity of thefixB product with cukaryotic flavoproteins, characterization offixX, and identification ofnifO asnifW. Mol. Gen. Genet. 225: 514–520

    Google Scholar 

  • Arnold W, Rump A, Klipp W, Priefer UB & Pühler A (1988) Nucleotide sequence of a 24,206 base pair DNA fragment carrying the entire nitrogen fixation gene cluster ofKlebsiella pneumoniae. J. Mol. Biol. 203: 715–738

    Google Scholar 

  • Arp DJ (1992) Hydrogen cycling in symbiotic bacteria. In: Evans H, Burris R & Stacey G (Eds) Biological Nitrogen Fixation (pp 432–460). Chapman & Hall, New York

    Google Scholar 

  • Atkins CA, Hunt S & Layzell DB (1993) Gaseous diffusive properties of soybean nodules cultured with non-ambient pO2. Physiologia Plantarum 87: 89–95

    Google Scholar 

  • Austin S & Dixon R (1992) The prokaryotic enhancer binding protein NTRC has an ATPase activity which is phosphorylation and DNA dependent. EMBO J. 11: 2219–2228

    Google Scholar 

  • Avissar YJ & Nadler KD (1978) Stimulation of tetrapyrrole formation inRhizobium japonicum by restricted aeration. J. Bacteriol. 135: 782–789

    Google Scholar 

  • Batut J, Daveran-Mingot ML, David M, Jacobs J, Garnerone AM & Kahn D (1989)fixK, a gene homologous withfnr andcrp fromEscherichia coli, regulates nitrogen fixation genes both positively and negatively inRhizobium meliloti. EMBO J. 8: 1279–1286

    Google Scholar 

  • Batut J, de Philip P, Reyrat JM, Waelkens F & Boistard P (1993) Oxygen regulation of nitrogen fixation gene expression inRhizobium meliloti. In: Nester EW & Verma DPS (Eds) Advances in Molecular Genetics of Plant-Microbe Interactions (pp 183–191). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Batut J, Terzaghi B, Ghérardi M, Huguet M, Terzaghi E, Garnerone AM, Boistard P & Huguet T (1985) Localization of a symbioticfix region onRhizobium meliloti pSym megaplasmid more than 200 kilobases from thenod-nif region. Mol. Gen. Genet. 199: 232–239

    Google Scholar 

  • Bergersen FJ, Turner GL, Bogusz D & Appleby CA (1988) Fixation of N2 by bacteroids from stem nodules ofSesbania rostrata. J. Gen. Microbiol. 134: 1807–1810

    Google Scholar 

  • Beynon JL, Williams MK & Cannon FC (1988) Expression and functional analysis of theRhizobium meliloti nifA gene. EMBO J. 7: 7–14

    Google Scholar 

  • Bishop PE & Premakumar R (1992) Alternative nitrogen fixation systems. In: Stacey G, Burris RH & Evans HJ (Eds) Biological Nitrogen Fixation (pp 736–762). Chapman & Hall, New York

    Google Scholar 

  • Bott M, Bolliger M & Hennecke H (1990) Genetic analysis of the cytochromec-aa3 branch of theBradyrhizobium japonicum respiratory chain. Mol. Microbiol. 4: 2147–2157

    Google Scholar 

  • Bott M, Preisig O & Hennecke H (1992) Genes for a second terminal oxidase inBradyrhizobium japonicum. Arch. Microbiol. 158: 335–343

    Google Scholar 

  • Bott M, Ritz D & Hennecke H (1991) TheBradyrhizobium japonicum cycM gene encodes a membrane-anchored homolog of mitochondrial cytochrome c. J. Bacteriol. 173: 6766–6772

    Google Scholar 

  • Buikema WJ, Klingensmith JA, Gibbons SL & Ausubel FM (1987) Conservation of structure and location ofRhizobium meliloti andKlebsiella pneumoniae nifB genes. J. Bacteriol. 169: 1120–1126

    Google Scholar 

  • Carlson TA, Martin GB & Chelm BK (1987) Differential transcription of the two glutamine synthetase genes ofBradyrhizobium japonicum. J. Bacteriol. 169: 5861–5866

    Google Scholar 

  • Colonna-Romano S, Arnold W, Schlüter A, Boistard P, Pülher A & Priefer UB (1990) An Fnr-like protein encoded inRhizobium leguminosarum biovarviciae shows structural and functional homology toRhizobium meliloti FixK. Mol. Gen. Genet. 223: 138–147

    Google Scholar 

  • Daveran ML (1988) Structure et transcription des gènes de fixation de l'azote deRhizobium meliloti. PhD thesis. Université Paul Sabatier, Toulouse, France

    Google Scholar 

  • David M, Daveran ML, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P & Kahn D (1988) Cascade regulation ofnif gene expression inRhizobium meliloti. Cell 54: 671–683

    Google Scholar 

  • Dean DR & Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH and Evans HJ (Eds) Biological Nitrogen Fixation (pp 763–834). Chapman & Hall, New York

    Google Scholar 

  • de Bruijn FJ, Rossbach S, Schneider M, Ratet P, Messmer S, Szeto WW, Ausubel FM & Schell J (1989)Rhizobium meliloti 1021 has three differentially regulated loci involved in glutamine biosynthesis, none of which is essential for symbiotic nitrogen fixation. J. Bacteriol. 171: 1673–1682

    Google Scholar 

  • Dénarié J & Cullimore J (1993) Lipo-oligosaccharide nodulation factors: new class of signaling molecules mediating recognition and morphogenesis. Cell. 74: 951–954

    Google Scholar 

  • Denèfle P, Kush A, Norel F, Paquelin A & Elmerich C (1987) Biochemical and genetic analysis of thenifHDKE region ofRhizobium ORS571. Mol. Gen. Genet. 207: 280–287

    Google Scholar 

  • de Philip P, Batut J & Boistard P (1990)Rhizobium meliloti FixL is an oxygen sensor and regulatesR. meliloti nifA andfixK genes differently inEscherichia coli. J. Bacteriol. 172: 4255–4262

    Google Scholar 

  • de Philip P, Soupène E, Batut J & Boistard P (1992) Modular structure of the FixL protein ofRhizobium meliloti. Mol. Gen. Genet. 235: 49–54

    Google Scholar 

  • de Vries W, Ras J, Stam H, Van Vlerken MMA, Hilgert U, de Bruijn FJ & Stouthamer AH (1988) Isolation and characterization of hydrogenase-negative mutants ofAzorhizobium caulinodans ORS571. Arch. Microbiol. 150: 595–599

    Google Scholar 

  • Ditta G, Virts E, Palomares A & Kim CH (1987) ThenifA gene ofRhizobium meliloti is oxygen regulated. J. Bacteriol. 169: 3217–3223

    Google Scholar 

  • Dreyfus BL, Elmerich C & Dommergues Y (1983) Free livingRhizobium strain able to grow on N2 as the sole nitrogen source. Appl. Environ. Microbiol. 45: 711–713

    Google Scholar 

  • Drummond MH, Contreras A & Mitchenall LA (1990) The function of isolated domains and chimaeric proteins constructed from the transcriptional activators NifA and NtrC ofKlebsiella pneumoniae. Mol. Microbiol. 4: 29–37

    Google Scholar 

  • Drummond M, Whitty P & Wooton J (1986) Sequence and domain relationships ofntrC andnifA fromKlebsiella pneumoniae: homologies to other regulatory proteins. EMBO J. 5: 441–447.

    Google Scholar 

  • Earl CD, Ronson CW & Ausubel FM (1987) Genetic and structural analysis of theRhizobium meliloti fixA, fixB, fixC, andfixX genes. J. Bacteriol. 169: 1127–1136

    Google Scholar 

  • Ebeling S, Noti JD & Hennecke H (1988) Identification of a newBradyrhizobium japonicum gene (frxA) encoding a ferredoxin like protein. J. Bacteriol. 170: 1999–2001

    Google Scholar 

  • Espin G, Moreno S, Wild M, Meza R & Iaccarino M (1990) A previously unrecognized glutamine synthetase expressed inKlebsiella pneumoniae from theglnT locus ofRhizobium leguminosarum. Mol. Gen. Genet. 223: 513–516

    Google Scholar 

  • Filser MMK, Moscatelli C, Lamberti A, Vincze E, Guida M, Salzano G & Iaccarino M (1986) Characterization and cloning of twoRhizobium leguminosarum genes coding for glutamine synthetase activities. J. Gen. Microbiol. 132: 2561–2569

    Google Scholar 

  • Fischer HM, Acuna G, Anthamatten D, Arigoni F, Babst M, Brouwer P, Kaspar T, Kullik I, Preisig O, Scherb B, Weidenhaupt M & Hennecke H (1993a) Two oxygen-responsive regulatory cascades control nitrogen fixation genes inBradyrhizobium japonicum. In: Palacios R, Mora J & Newton WE (Eds) New Horizons in Nitrogen Fixation (pp 411–416). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Fischer HM, Alvarez-Morales & Hennecke H (1986) The pleiotropic nature of symbiotic regulatory mutants:Bradyrhizobium japonicum nifA gene is involved in control ofnif gene expression and formation of determinate symbiosis. EMBO J. 5: 1165–1173

    Google Scholar 

  • Fischer HM, Babst M, Kaspar T, Acuna G, Arigoni F & Hennecke H (1993b) One member of agroESL-like chaperonin multigene family inBradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J. 12: 2901–2912

    Google Scholar 

  • Fischer HM, Bruderer T & Hennecke H (1988) Essential and nonessential domains in theBradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues potentially involved in redox activity and/or metal binding. Nucleic. Acids Res. 16: 2207–2224

    Google Scholar 

  • Fischer HM & Hennecke H (1987) Direct response ofBradyrhizobium japonicum nifA- mediatednif gene regulation to cellular oxygen status. Mol. Gen. Genet. 209: 621–626

    Google Scholar 

  • Gabel C & Maier RJ (1990) Nucleotide sequence of thecoxA encoding subunit I of cytochromeaa3 ofBradyrhizobium japonicum. Nucleic. Acids Res. 18: 6143

    Google Scholar 

  • Gebhardt C, Turner GL, Gibson AH, Dreyfus BL & Bergensen FJ (1984) Nitrogen-fixing growth in continuous culture of a strain ofRhizobium sp. isolated from stem nodules ofSesbania rostrata. J. Gen. Microbiol. 130: 843–848

    Google Scholar 

  • Gilles-Gonzalez MA, Ditta GS & Helinski DR (1991) A haemoprotein with kinase activity encoded by the oxygen sensor ofRhizobium meliloti. Nature 350: 170–172

    Google Scholar 

  • Gilles-Gonzalez MA & Gonzalez (1993) Regulation of the kinase activity of heme protein FixL from the two-component system FixL/FixJ ofRhizobium meliloti. J. Biol. Chem. 268: 16293–16297

    Google Scholar 

  • Govezenski D, Greener T, Segal G & Zamir A (1991) Involvement of GroEL innif gene regulation and nitrogenase assembly. J. Bacteriol. 173: 6339–6346

    Google Scholar 

  • Gubler M & Hennecke H (1986)fixA, B and C genes are essential for symbiotic and free-living microaerobic nitrogen fixation. FEBS Lett. 200: 186–192

    Google Scholar 

  • Guerinot ML & Chelm BK (1986) Bacterial δ-aminolevulinic acid synthase activity is not essential for leghemoglobin formation in soybean/Bradyrhizobium japonicum symbiosis. Proc. Natl. Acad. Sci. USA 83: 1837–1841

    Google Scholar 

  • Haaker H & Klugkist J (1987) The bioenergetics of electron transport to nitrogenase. FEMS Microbiol. Rev. 46: 57–71

    Google Scholar 

  • Hartwig U, Boller B & Nösberger J (1987) Oxygen supply limits nitrogenase activity of clover nodules after defoliation. Annals Bot. 59: 285–291

    Google Scholar 

  • Hawkins FKL, Kennedy C & Johnston AWB (1991) ARhizobium leguminosarum gene required for symbiotic nitrogen fixation, melanin synthesis and normal growth on certain growth media. J. Gen. Microbiol. 137: 1721–1728

    Google Scholar 

  • Hawkins FKL & Johnston AWB (1988) Transcription of aRhizobium leguminosarum biovarphaseoli gene needed for melanin synthesis is activated bynifA ofRhizobium andKlebsiella pneumoniae. Mol. Microbiol. 2: 331–337

    Google Scholar 

  • Hennecke H (1993) The role of respiration in symbiotic nitrogen fixation. In: Palacios R, Mora J & Newton WE (Eds) New Horizons in Nitrogen Fixation (pp. 55–64). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hennecke H, Anthamatten D, Babst M, Bott M, Fischer HM, Kasper T, Kullik I, Loferer H, Preisig O, Ritz D & Weidenhaupt M (1993) Genetic and physiologic requirements for optimal bacteroid function in theBradyrhizobium japonicum soybean symbiosis. In: Nester EW & Verma DPS (Eds) Advances in molecular genetics of plant-microbe interactions, vol 2 (pp 199–207). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hertig C, Li RY, Louarn AM, Garnerone AM, David M, Batut J, Kahn D & Boistard P (1989)Rhizobium meliloti regulatory genefixJ activates transcription ofRhizobium meliloti nifA andfixK genes inEscherichia coli. J. Bacteriol. 171: 1736–1738

    Google Scholar 

  • Hidalgo E, Palacios JM, Murillo J & Ruiz-Argüeso T (1992) Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon fromRhizobium leguminosarum bv.viciae. J. Bacteriol. 174: 4130–4139

    Google Scholar 

  • Hill S (1976) The apparent ATP requirement for nitrogen fixation in growingKlebsiella pneumoniae. J. Gen. Microbiol. 95: 297–312

    Google Scholar 

  • Hill S (1988) How is nitrogenase regulated by oxygen? FEMS Microbiol. Rev. 54: 111–130

    Google Scholar 

  • Hill S (1992) Physiology of nitrogen fixation in free-living heterotrophs. In: Evans H, Burris R & Stacey G (Eds) Biological Nitrogen Fixation (pp. 87–134). Chapman & Hall, New-York

    Google Scholar 

  • Iannetta PPM, De Lorenzo C, James EK, Fernandez-Pascual M, Sprent JI, Lucas MM, Witty JF, De Felipe MR & Minchin FR (1993) Oxygen diffusion in lupin nodules. I. Visualization of diffusion barrier operation. J. Experiment Bot. 44: 1461–1467

    Google Scholar 

  • Kahn D, David M, Domergue O, Daveran ML, Ghai J, Hirsch P & Batut J (1989)Rhizobium meliloti fixGHI sequence predicts involvement of a specific cation pump in symbiotic nitrogen fixation. J. Bacteriol. 171: 929–939

    Google Scholar 

  • Kahn D & Ditta G (1991) Modular structure of FixJ: homology of the transcriptional activator domain with the −35 binding domain of sigma factors. Mol. Microbiol. 5: 987–997

    Google Scholar 

  • Kaminski PA & Elmerich C (1991) Involvement offixLJ in the regulation of nitrogen fixation inAzorhizobium caulinodans. Mol. Microbiol. 5: 665–673

    Google Scholar 

  • Kaminski PA, Mandon K, Arigoni F, Desnoues N & Elmerich C (1991) Regulation of nitrogen fixation inAzorhizobium caulinodans: identification of afixK-like gene, a positive regulator ofnifA. Mol. Microbiol. 5: 1983–1991

    Google Scholar 

  • Kaminski PA, Norel F, Desnoues N, Kush A, Salzano G & Elmerich C (1988) Characterization of thefixABC region ofAzorhizobium caulinodans ORS571 and identification of a new nitrogen fixation gene. Mol. Gen. Genet. 214: 496–502

    Google Scholar 

  • Keefe RG & Maier RJ (1993) Purification and characterization of an O2-utilizing cytochrome-c oxidase complex fromBradyrhizobium japonicum bacteroid membranes. Biochim. Biophys. Acta 1183: 91–104

    Google Scholar 

  • Kim H, Choonbal Y & Maier RJ (1991) Commoncis-acting region responsible for transcriptional regulation ofBradyrhizobium japonicum hydrogenase by nickel, oxygen, and hydrogen. J. Bacteriol. 173: 3993–3999

    Google Scholar 

  • Klipp W, Reiländer H, Schlüter A, Krey R & Pühler A (1989) TheRhizobium meliloti fdxN gene encoding a ferredoxin-like protein is necessary for nitrogen fixation and is cotranscribed withnifA andnifB. Mol. Gen. Genet. 216: 293–302

    Google Scholar 

  • Krey R, Pühler A & Klipp W (1992) A defined aminoacid exchange close to the putative nucleotide binding site is responsible for an oxygen-tolerant variant of theRhizobium meliloti NifA protein. Mol. Gen. Genet. 234: 433–441

    Google Scholar 

  • Kündig C, Hennecke H & Göttfert M (1993) Correlated physical and genetic map of theBradyrhizobium japonicum 110 Genome. J. Bacteriol. 175: 613–622

    Google Scholar 

  • Kustu S, Santero E, Keener J, Popham & Weiss D (1989) Expression of σ54 (NtrA)-dependent genes is probably united by a common mechanism. Microbiol. Rev. 53: 367–376

    Google Scholar 

  • Layzell DB, Hunt S, Moloney AHM, Fernando SM & Diaz del Castillo L (1990) Physiological, metabolic and developmental implications of O2 regulation in legume nodules. In: Gresshoff PM, Roth LE, Stacey G & Newton WE (Eds) Nitrogen fixation: achievements and objectives (pp 21–32). Chapman & Hall, New-York

    Google Scholar 

  • Leong SA, Williams PH & Ditta GS (1985) Analysis of the 5′ regulatory region of the gene for delta-aminolevulinic acid synthetase ofRhizobium meliloti. Nucleic Acids Res. 13: 5965–5976

    Google Scholar 

  • Lois AF, Ditta GS & Helinski DR (1993a) The oxygen sensor FixL ofRhizobium meliloti is a membrane protein containing four possible transmembrane segments. J. Bacteriol. 175: 1103–1109

    Google Scholar 

  • Lois AF, Weinstein M, Ditta GS & Helinski DR (1993b) Autophosphorylation and phosphatase activity of the oxygen-sensing protein FixL ofRhizobium meliloti are coordinately regulated by oxygen. J. Biol. Chem. 268: 4370–4375

    Google Scholar 

  • Lukat GS, Mc Cleary WR, Stock AM & Stock JB (1992) Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc. Natl. Acad. Sci. USA 89: 718–722

    Google Scholar 

  • Maier RJ, Campbell NER, Hanus FJ, Simpson FB, Russel SA & Evans HJ (1978) Expression of hydrogenase activity in free-livingRhizobium japonicum. Proc. Natl. Acad. Sci. USA 75: 3258–3262

    Google Scholar 

  • Mandon K, Kaminski PA, Mougel C, Desnoues N, Dreyfus B & Elmerich C (1993) Role of thefixGHI region ofAzorhizobium caulinodans in free-living and symbiotic nitrogen fixation. FEMS Microbiol. Lett. 114: 185–190

    Google Scholar 

  • Martin GB, Chapman KA & Chelm BK (1988) Role of theBradyrhizobium japonicum ntrcC gene product in differential regulation of the glutamine synthetase II gene (glnII). J. Bacteriol. 170: 5452–5459

    Google Scholar 

  • Martin GB & Chelm BK (1991)Bradyrhizobium japonicum ntrBC/glnA andnifA/glnA mutants: Further evidence that separate regulatory pathways governglnII expression in free-living and symbiotic cells. Mol. Plant-Microbe Interact. 4: 254–261

    Google Scholar 

  • Merrick MJ (1992) Regulation of nitrogen fixation genes in free-living and symbiotic bacteria. In: Stacey G, Burris RH & Evans HJ (Eds) Biological Nitrogen Fixation (pp 835–876). Chapman & Hall, New York

    Google Scholar 

  • Monson EK, Weinstein M, Ditta G & Helinski DR (1992) The FixL protein ofRhizobium meliloti can be separated into a heme-binding oxygen-sensing domain and a functional C-terminal kinase domain. Proc. Natl. Acad. Sci. USA 89: 4280–4284

    Google Scholar 

  • Morett E, Fischer HM & Hennecke H (1991) Influence of oxygen on DNA binding, positive control, and stability of theBradyrhizobium japonicum nifA regulatory protein. J. Bacteriol. 173: 3478–3487

    Google Scholar 

  • Morett E, Kreutzer R, Cannon W & Buck M (1990) The influence of theKlebsiella pneumoniae regulatory genenifL upon the transcriptional activator protein NifA. Mol. Microbiol. 4: 1253–1258

    Google Scholar 

  • Morett E, Olvera L & Hennecke H (1993) Overlapping promoters for two polymerase holoenzymes regulate transcription ofnifA inBradyrhizobium japonicum. In: Palacios R, Mora J & Newton WE (Eds) New horizons in nitrogen fixation (p 483). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Murphy PJ, Heycke N, Trenz SP, Ratet P, De Bruijn FJ & Schell J (1988) Synthesis of an opine-like compound, a rhizopine, in alfalfa nodules is symbiotically regulated. Proc. Natl. Acad. Sci. USA 85: 9133–9137

    Google Scholar 

  • Murphy PJ & Saint CP (1991) Rhizopines in the legume-Rhizobium symbiosis. In: Verma DPS (Ed) Molecular signals in Plant-Microbe communications (pp 378–390). CRC Press, London

    Google Scholar 

  • Murphy PJ, Trenz SP, Grzemski W, De Bruijn FJ & Schell J (1993) TheRhizobium meliloti rhizopinemos locus is a mosaic structure facilitating its symbiotic regulation. J. Bacteriol. 175: 5193–5204

    Google Scholar 

  • Noonan B, Motherway M & O'Gara F (1992) Ammonia regulation of theRhizobium meliloti nitrogenase structural and regulatory genes under free living conditions: Involvement of thefixL gene product? Mol. Gen. Genet. 234: 423–428

    Google Scholar 

  • Norel F, Desnoues N & Elmerich C (1985) Characterization of DNA sequences homologous toKlebsiella pneumoniae nifA, nifH, D, K andE in tropicalRhizobium ORS571. Mol. Gen. Genet. 199: 352–356

    Google Scholar 

  • O'Brian MR & Maier RJ (1989) Molecular aspects of the energetics of nitrogen fixation inRhizobium-legume symbiosis. Biochim. Biophys. Acta. 974: 229–246

    Google Scholar 

  • Palacios JM, Murillo J, Leyva A & Ruiz-Argüeso T (1990) Differential expression of hydrogen uptake (hup genes) in vegetative and symbiotic cells ofRhizobium leguminosarum. Mol. Gen. Genet. 221: 363–370

    Google Scholar 

  • Parkinson JS & Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26: 71–112

    Google Scholar 

  • Pawlowski K, Gough SP, Kannangara CG & de Bruijn FJ (1993) Characterization of a 5-aminolevulinic acid synthase mutant ofAzorhizobium caulinodans ORS571. Mol. Plant-Microbe Interact. 6: 35–44

    Google Scholar 

  • Preisig O, Anthamatten D & Hennecke H (1993) Genes for a microaerobically induced oxidase complex inBradyrhizobium japonicum are essential for a nitrogen fixing endosymbiosis. Proc. Natl. Acad. Sci. USA 90: 3309–3313

    Google Scholar 

  • Ratet P, Pawlowski K, Schell J & de Bruijn FJ (1989) TheAzorhizobium caulinodans nitrogen-fixation regulatory gene,nifA, is controlled by the cellular nitrogen and oxygen status. Mol. Microbiol. 3: 825–838

    Google Scholar 

  • Rey L, Hidalgo E, Palacios J & Ruiz-Argüeso T (1992) Nucleotide sequence and organization of an H2-uptake gene cluster fromRhizobium leguminosarum bv.viciae containing a rubredoxin-like gene and four additional open reading frames. J. Mol. Biol. 228: 998–1002

    Google Scholar 

  • Rey L, Murillo J, Hernando Y, Hidalgo E, Cabrera E, Imperial J & Ruiz-Argüeso T (1993a) Molecular analysis of a microaerobically induced operon for hydrogenase synthesis inRhizobium leguminosarum biovar viciae. Mol. Microbiol. 8: 471–481

    Google Scholar 

  • Rey L, Palacios JM, Hernando Y, Urzainqui A, Brito B, Cabrera E, Imperial J & Ruiz-Argüeso T (1993b). Molecular analysis of aRhizobium leguminosarum gene cluster (hyp ABFCDE) required for hydrogenase activity. In: Palacios R, Mora J & Newton WE (Eds) New Horizons in nitrogen fixation (p 491). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Reyrat JM, David M, Blonski C, Boistard P & Batut J (1993) Oxygen-regulated in vitro transcription ofRhizobium meliloti nifA andfixK genes. J. Bacteriol. 175: 6867–6872

    Google Scholar 

  • Rusangawa E & Gupta RS (1993) Cloning and characterization of multiplegroEL chaperonin-encoding genes inRhizobium meliloti. Gene 126: 67–75

    Google Scholar 

  • Ruvkun GB & Ausubel FM (1980) Interspecies homology of nitrogenase genes. Proc. Natl. Acad. Sci. USA 77: 191–195

    Google Scholar 

  • Ruvkun GB, Sundaresan V & Ausubel FM (1982) Directed transposon Tn5 mutagenesis and complementation analysis ofRhizobium meliloti symbiotic nitrogen fixation genes. Cell 29: 551–559

    Google Scholar 

  • Saint CP, Wexler M, Murphy PJ, Tempé J, Tate ME & Murphy PJ (1993) Characterization of genes for synthesis and catabolism of a new rhizopine induced in nodules byRhizobium meliloti Rm220-3: Extension of the Rhizopine concept. J. Bacteriol. 175: 5205–5215

    Google Scholar 

  • Sanders DA, Gillece-Castro BL, Burlingame AL & Koshland Jr DE (1992) Phosphorylation site of NtrC, a protein phosphatase whose covalent intermediate activates transcription. J. Bacteriol. 174: 5117–5122

    Google Scholar 

  • Sanjuan J & Olivares J (1989) Implication ofnifA in regulation of genes located on aRhizobium meliloti cryptic plasmid that affect nodulation efficiency. J. Bacteriol. 171: 4154–4161

    Google Scholar 

  • Sanjuan J & Olivares J (1991) NifA-NtrA regulatory system activates transcription ofnfe, a gene locus involved in nodulation competitiveness ofRhizobium meliloti. Arch. Microbiol. 155: 543–548

    Google Scholar 

  • Schlüter A, Patschkowski, Unden G & Priefer UB (1992) TheRhizobium leguminosarum FnrN protein is functionally similar toEscherichia coli Fnr and promotes heterologous oxygen-dependent activation of transcription. Mol. Microbiol. 6: 3395–3404

    Google Scholar 

  • Schlüter A, Patschkowski T, Weidner S, Unden G, Hynes MF & Priefer UB (1993) Functional and regulatory characteristics of FnrN, an oxygen-responsive transcriptional activator inRhizobium leguminosarum bv.viciae. In: Palacios R, Mora J & Newton WE (Eds) New Horizons in Nitrogen Fixation (p 493). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Somerville JE & Chelm BK (1988) Regulation of heme biosynthesis inBradyrhizobium japonicum. In: Palacios R & Verma DPS (Eds) Molecular Genetics of Plant-Microbe Interactions (pp 111–112). APS Press, St-Paul, MI, USA

    Google Scholar 

  • Somerville JE & Kahn ML (1983) Cloning of the glutamine synthetase I gene fromRhizobium meliloti. J. Bacteriol. 156: 168–176

    Google Scholar 

  • Stam H, van Verseveld W, de Vries W & Stouthamer AH (1984) Hydrogen oxidation and efficiency of nitrogen fixation in succinate-limited chemostat cultures ofRhizobium ORS571. Arch. Microbiol. 139: 53–60

    Google Scholar 

  • Stanley J, Dowling DN & Broughton WJ (1988) Cloning ofhemA fromRhizobium sp. NGR234 and symbiotic phenotype of a gene-directed mutant in diverse legume genera. Mol. Gen. Genet. 215: 32–37

    Google Scholar 

  • Stigter J, Schneider M & de Bruijn FJ (1993)Azorhizobium caulinodans nitrogen fixation (nif/fix) gene regulation: mutagenesis of thenifA -24/-12 promoter element, characterization of antrA (rpoN) gene, and derivation of a model. Mol. Plant-Microbe. Interact. 6: 238–252

    Google Scholar 

  • Stouthamer AH, Stam H, de Vries W & Van Verklen M (1988) Some aspects of nitrogen fixation in free-living cultures ofRhizobium. In: Bothe H, de Bruijn FJ & Newton WE (Eds) Nitrogen fixation: Hundred years after (pp 257–260). Gustav Fischer, Stuttgart.

    Google Scholar 

  • Szeto WW, Nixon BT, Ronson CW & Ausubel FM (1987) Identification and characterization of theRhizobium meliloti ntrC gene:Rhizobium meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells. J. Bacteriol. 169: 1423–1432

    Google Scholar 

  • Szeto WW, Zimmerman JL, Sundaresan V & Ausubel FM (1984) ARhizobium meliloti symbiotic regulatory gene. Cell 36: 1035–1043

    Google Scholar 

  • Thöny B, Anthamatten D & Hennecke H (1989) Dual control of theBradyrhizobium japonicum symbiotic nitrogen fixation regulatory operonfixR nifA: Analysis ofcis- andtrans-acting elements. J. Bacteriol. 171: 4162–4169

    Google Scholar 

  • Thöny B, Fischer HM, Anthamatten D, Bruderer T & Hennecke H (1987) The symbiotic nitrogen fixation regulatory operon (fixRnifA) ofBradyrhizobium japonicum is expressed aerobically and is subject to a novel,nifA-independent type of activation. Nucl. Acids Res. 15: 8479–8499

    Google Scholar 

  • Thöny-Meyer L, Stax D & Hennecke H (1989) An unusual gene cluster for the cytochromebc 1 complex inBradyrhizobium japonicum and its requirement for effective root nodule symbiosis. Cell 57: 683–697

    Google Scholar 

  • Van Soom C, Browaeys J, Verreth C & Vanderleyden J (1993a) Nucleotide sequence analysis of four genes,hupC, hupD, hupF andhup G, downstream of the hydrogenase structural genes inBradyrhizobium japonicum. J. Mol. Biol. 234: 508–512

    Google Scholar 

  • Van Soom C, Verreth C, Sampaio MJ & Vanderleyden J (1993b) Identification of a potential transcriptional regulator of hydrogenase activity in free-livingBradyrhizobium japonicum strains. Mol. Gen. Genet. 239: 235–240

    Google Scholar 

  • Waelkens F, Foglia A, Morel JB, Fourment J, Batut J & Boistard P (1992) Molecular genetic analysis of theRhizobium meliloti fixK promoter: identification of sequences involved in positive and negative regulation. Mol. Microbiol. 6: 1447–1456

    Google Scholar 

  • Wallington EJ & Lund PA (1994)Rhizobium leguminosarum contains multiple chaperonin (cpn60) genes. Microbiology 140: 113–122

    Google Scholar 

  • Weiss DS, Batut J, Klose KE, Keener J & Kustu S (1991) The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription. Cell 67: 155–167

    Google Scholar 

  • Witty JF & Minchin FR (1990) Oxygen diffusion in the legume root nodule. In: Gresshoff PM, Roth LE, Stacey G & Newton WE (Eds) Nitrogen fixation: achievements and objectives (pp 285–292). Chapman & Hall, New York

    Google Scholar 

  • Witty JF, Minchin FR, Skot L & Sheehy JE (1986) Nitrogen fixation and oxygen in legume root nodules. In: Oxford Surveys of Plant Molecular and Cell Biology, vol. 3 (pp 275–314). Oxford University Press, Oxford

    Google Scholar 

  • Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Evans H, Burris R & Stacey G (Eds) Biological Nitrogen Fixation (pp 43–86). Chapman & Hall, New-York

    Google Scholar 

  • Zimmerman JL, Szeto WW & Ausubel FM (1983) Molecular characterization of Tn5-induced symbiotic (Fix) mutants ofRhizobium meliloti. J. Bacteriol. 156: 1025–1034

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batut, J., Boistard, P. Oxygen control inRhizobium . Antonie van Leeuwenhoek 66, 129–150 (1994). https://doi.org/10.1007/BF00871636

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871636

Key words

Navigation