Skip to main content
Log in

Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Toxic aromatic pollutants, concentrated in industrial wastes and contaminated sites, can potentially be eliminated by low cost bioremediation systems. Most commonly, the goal of these treatment systems is directed at providing optimum environmental conditions for the mineralization of the pollutants by naturally occurring microflora. Electrophilic aromatic pollutants with multiple chloro, nitro and azo groups have proven to be persistent to biodegradation by aerobic bacteria. These compounds are readily reduced by anaerobic consortia to lower chlorinated aromatics or aromatic amines but are not mineralized further. The reduction increases the susceptibility of the aromatic molecule for oxygenolytic attack. Sequencing anaerobic and aerobic biotreatment steps provide enhanced mineralization of many electrophilic aromatic pollutants. The combined activity of anaerobic and aerobic bacteria can also be obtained in a single treatment step if the bacteria are immobilized in particulate matrices (e.g. biofilm, soil aggregate, etc.). Due to the rapid uptake of oxygen by aerobes and facultative bacteria compared to the slow diffusion of oxygen, oxygen penetration into active biofilms seldom exceeds several hundred micrometers. The anaerobic microniches established inside the biofilms can be applied to the reduction of electron withdrawing functional groups in order to prepare recalcitrant aromatic compounds for further mineralization in the aerobic outer layer of the biofilm.

Aside from mineralization, polyhydroxylated and chlorinated phenols as well as nitroaromatics and aromatic amines are susceptible to polymerization in aerobic environments. Consequently, an alternative approach for bioremediation systems can be directed towards incorporating these aromatic pollutants into detoxified humic-like substances. The activation of aromatic pollutants for polymerization can potentially be encouraged by an anaerobic pretreatment step prior to oxidation. Anaerobic bacteria can modify aromatic pollutants by demethylating methoxy groups and reducing nitro groups. The resulting phenols and aromatic amines are readily polymerized in a subsequent aerobic step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriaens P & Grbic-Galic D (1992) Fate of highly chlorinated dibenzo-p-dioxins and dibenzofurans in anaerobic soils and sediments. In: DECHEMA Preprints Soil Decontamination Using Biological Processes, Karlsruhe (pp. 79–82)

  • Adriaens P, Kohler HPE, Kohler-Staub D & Focht DD (1989) Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4'-dichlorobiphenyl. Appl. Environ. Microbiol. 55: 887–892

    Google Scholar 

  • Alder AC, Haggblom MM, Oppenheimer SR & Young LY (1993) Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments. Environ. Sci. Technol. 27: 530–538

    Google Scholar 

  • Allard AS, Hynning PA, Lindgren C, Remberger M & Neilson AH (1991) Dechlorination of chlorocatechols by stable enrichment cultures of anaerobic bacteria. Appl. Environ. Microbiol. 57: 77–84

    Google Scholar 

  • Anid PJ, Nies L & Vogel TM (1991) Sequential anaerobic-aerobic biodegradation of PCBs in the river model. In: Hinchee RE & Olfenbttel RF (Eds) On-Site Bioreclamation: Processes of Xenobiotic and Hydrocarbon Treatment (pp. 428–436). Butterworth-Heinemann, Boston

    Google Scholar 

  • Aronstein BN & Alexander M (1993) Effect of a non-ionic surfactant added to the soil surface on the biodegradation of aromatic hydrocarbons within the soil. Appl. Microbiol. Biotechnol. 39: 386–390

    Google Scholar 

  • Asplund G & Grimvall A (1991) Organohalogens in nature — more widespread than previously assumed. Environ. Sci. Technol. 25: 1346–1350

    Google Scholar 

  • Bartha R, Linke HAB & Pramer D (1968) Pesticide transformations: Production of chloroazobenzenes from chloroanilines. Science 161: 582–583

    Google Scholar 

  • Battersby NS & Wilson V (1989) Survey of the anaerobic biodegradation potential of organic chemicals in digesting sludge. Appl. Environ. Microbiol. 55: 443–439

    Google Scholar 

  • Battersby NS, Malcolm SJ, Brown CM & Stanley SO (1985) Sulphate reduction in oxic and sub-oxic North-East Atlantic sediments. FEMS Microbiol. Ecol. 31: 225–228

    Google Scholar 

  • Bedard DL, Wagner RE, Brennan MJ, Haberl ML & Brown-Jr JF (1987) Extensive degradation of aroclors and environmentally transformed polychlorinated biphenyls byAlcaligens eutrophs H850. Appl. Environ. Microbiol. 53: 1094–1102

    Google Scholar 

  • Beller HR, Grbic-Galic D & Reinhard M (1992) Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process. Appl. Environ. Microbiol. 58: 786–793

    Google Scholar 

  • Berry DF & Boyd SA (1985) Decontamination of soil through enhanced formation of bound residues. Environ. Sci. Technol. 19: 1132–1133

    Google Scholar 

  • Beunick J & Rehm HJ (1988) Synchronous anaerobic and aerobic degradation of DDT by an immobilized mixed culture system. Appl. Microbiol. Biotechnol. 29: 72–80

    Google Scholar 

  • Beunink J & Rehm HJ (1990) Coupled reductive and oxidative degradation of 4-chloro-2-nitrophenol by a co-immobilized mixed culture system. Appl. Microbiol. Biotechnol. 34: 108–115

    Google Scholar 

  • Bollag JM & Kaiser JP (1991) The transformation of heterocyclic aromatic compounds and their derivatives under anaerobic conditions. Critical Rev. Environ. Control 21(3/4): 297–329

    Google Scholar 

  • Bollag JM, Sjoblad RD & Minard RD (1977) Polymerization of phenolic intermediates of pesticides by a fungal enzyme. Experientia 33: 1564–1566

    Google Scholar 

  • Bollag JM, Minard RD & Liu SY (1983) Cross-linkage between anilines and phenolic humus constituents. Environ. Sci. Technol. 17: 72–80

    Google Scholar 

  • Bollag JM, Chen CM, Sarkar JM & Loll MJ (1987) Extraction and purification of peroxidase from soil. Soil Biol. Biochem. 19: 61–67

    Google Scholar 

  • Bollag JM, Shuttleworth KL & Anderson DH (1988) Laccase — mediated detoxification of phenolic compounds. Appl. Environ. Microbiol. 54: 3086–3091

    Google Scholar 

  • Boopathy R, Wilson M & Kulpa CF (1993) Anaerobic removal of 2,4,6-trinitrotoluene (TNT) under different electron accepting conditions: laboratory study. Water Environ. Res. 65: 271–75

    Google Scholar 

  • Bosma TNP, van der Meer JR, Schraa G, Tros ME & Zehnder AJB (1988) Reductive dechlorination of all trichloro-and dichlorobenzene isomers. FEMS Microbiol. Ecol. 53: 223–229

    Google Scholar 

  • Bosma TNP, W Ballemans MEM, Hoekstra NK, te-Welscher RAG, Smeenk JGMM, Schraa G & Zehnder AJB (1994) Biotransformation of organic contaminants in sediment columns and a dune infiltration area. Groundwater (in press)

  • Boyd SA, Shelton DR, Berry D & Tiedje JM (1983) Anaerobic biodegradation of phenolic compounds in digested sludge. Appl. Environ. Microbiol. 46: 50–54

    Google Scholar 

  • Boyd SA & Shelton RD (1984) Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl. Environ. Microbiol. 47: 272–277

    Google Scholar 

  • Boyle AW, Blake CK, Price-II WA & May HD (1993) Effects of polychlorinated biphenyl congener concentration and sediment supplementation on rates of methanogenesis and 2,3,6-trichlorobiphenyl dechlorination in an anaerobic enrichment. Appl. Environ. Microbiol. 59: 3027–3031

    Google Scholar 

  • Briglia M, Middeldorp PJM & Salkinoja-Salonen MS (1994) Mineralization performance ofRhodococcus chlorophenolicus strain PCP-1 in contaminated soil simulating on site conditions. Soil Biol. Biochem. 26: 377–385

    Google Scholar 

  • Brown D & Hamburger B (1987) The degradation of dyestuffs: Part III, investigations of their ultimate degradability. Chemosphere 16: 1539–1553

    Google Scholar 

  • Brown D & Laboureur P (1983a) The degradation of dyestuffs: Part I primary biodegradation under anaerobic conditions. Chemosphere 12: 397–404

    Google Scholar 

  • Brown D & Laboureur P (1983b) The aerobic biodegradability of primary aromatic amines. Chemosphere 12: 405–414

    Google Scholar 

  • Cain RB (1992) Microbial degradation of synthetic polymers. In: Fry JC, Gadd GM, Herbert RA, Jones CW & Watson-Craik IA (Eds) Microbial Control of Pollution, Society for General Microbiology, Symposium 48 (pp. 293–338). Univ. Cambridge Press, Cambridge

    Google Scholar 

  • Carliell CM, Godefroy SJ, Naidoo N, Buckley CA, Senior E, Mulholland D & Martineigh BS (1994) Anaerobic decolourisation of azo dyes. In: Proceedings of the Seventh International Symposium on Anaerobic Digestion, Cape Town, South Africa (pp. 303–306)

  • Carpenter DF, McCormick NG, Cornell JH & Kaplan AM (1978) Microbial transformation of 14C-labeled 2,4,6-trinitrotoluene in an activated-sludge system. Appl. Environ. Microbiol. 35: 949–954

    Google Scholar 

  • Castro TF & Toshida T (1971) Degradation of organochlorine insecticides in flooded soils in the Philippines. J. Agric. Food. Chem. 19: 1168–1170

    Google Scholar 

  • Chang CW & Bumpus JA (1993) Oligomers of 4-chloroniline are intermediates formed during its biodegradation byPhanerochaete chrysosporium. FEMS Microbiol. Lett. 107: 337–342

    Google Scholar 

  • Chen W, Supanwong K, Ohmiya K, Shimizu S & Kawakami H (1985) Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria. Appl. Environ. Microbiol. 50: 1451–1456

    Google Scholar 

  • Cheng HH, Haider K & Harper SS (1983) Catechol and chlorocatechols in soil: degradation and extractability. Soil Biol. Biochem. 15: 311–317

    Google Scholar 

  • Claus H & Filip Z (1990) Enzymatic oxidation of some phenols and aromatic amines, and the behaviour of some phenoloxidases in the presence of soil related adsorbents. Wat. Sci. Tech. 22(6): 66–77

    Google Scholar 

  • Colberg PJ & Young LY (1985) Anaerobic degradation of soluble fractions of (14C-lignin)lignocellulose. Appl. Environ. Microbiol. 49: 345–349

    Google Scholar 

  • Cozza CL & Woods SL (1992) Reductive dechlorination pathways for substituted benzenes: a correlation with electronic properties. Biodegradation 2: 265–278

    Google Scholar 

  • Crawford RL (1993) Biotreatment of nitroaromatic compounds. TIBTECH 11: 411–412

    Google Scholar 

  • Cussler EL (1992) Diffusion, Mass Transfer in Fluid Systems. Cambridge University Press, New York

    Google Scholar 

  • Cypionka H, Widdel F & Pfennig N (1985) Survival of sulfatereducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol. Ecol. 31: 39–45

    Google Scholar 

  • Dahlman O, Morck R, Ljundquist P, Relman A, Johansson C, Boren H & Grimvall A (1993) Chlorinated structural elements in high molecular weight organic matter from unpolluted waters and bleached-kraft mill effluents. Environ. Sci. Technol. 27: 1616–1620

    Google Scholar 

  • Das N (1969) Studies on flavanoid metabolism. Degradation of (+)-catechin by rat intestinal contents. Biochim. Biophys. Acta 177: 668–670

    Google Scholar 

  • De MA, O'Connor OA & Kosson DS (1994) Metabolism of aniline under different anaerobic electron-accepting and nutritional conditions. Environ. Toxicol. Chem. 13: 233–239

    Google Scholar 

  • De Beer D (1990) Microelectrode studies in biofilms and sediments. Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands

    Google Scholar 

  • Dec J & Bollag JM (1988) Microbial release and degradation of catechol and chlorophenols bound to synthetic humus. Soil Sci. Soc. Am. J. 52: 1366–1371

    Google Scholar 

  • De Jong E, Field JA, Spinnler HE, Wijnberg JBPA & de Bont JAM (1994) Significant biogenesis of chlorinated aromatics by fungi in natural environments. Appl. Environ. Microbiol. 60: 264–270

    Google Scholar 

  • Dickel O, Haug W & Knackmuss HJ (1993) Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process. Biodegradation 4: 187–194

    Google Scholar 

  • Dolfing J & Harrison BK (1993) Redox and reduction potentials as parameters to predict the degradation pathway of chlorinated benzenes in anaerobic environments. FEMS Microbiol. Ecol. 13: 23–30

    Google Scholar 

  • Dorn E & Knackmuss HJ (1978) Chemical structure and biodegradability of halogenated aromatic compounds: Substituent effects of 1,2-dioxygenation of catechol. Biochem. J. 174: 85–94

    Google Scholar 

  • Dubin P & Wright L (1975) Reduction of azo food dyes in cultures of Proteus vulgaris. Xenobiotica 5: 563–571

    Google Scholar 

  • Edwards EA & Grbic-Galic DJ (1994) Anaerobic degradation of toluene and o-xylene by a methanogenic consortium. Appl. Environ. Microbiol. 60: 313–322

    Google Scholar 

  • Edwards EA, Wills LE, Reinhard M & Grbic-Galic DJ (1992) Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions. Appl. Environ. Microbiol. 58: 794–800

    Google Scholar 

  • Edwards EA, Edwards AM & Grbic-Galic DJ (1994) A method for detection of aromatic metabolites at very low concentrations: Application to detection of metabolites of anaerobic toluene degradation. Appl. Environ. Microbiol. 60: 323–327

    Google Scholar 

  • Evans WC & Fuchs G (1988) Anaerobic degradation of aromatic compounds. Ann. Rev. Microbiol. 42: 289–317

    Google Scholar 

  • Evans PJ, Dzung TM, Kim KS & Young LY (1991) Anaerobic degradation of toluene by a denitrifying bacterium. Appl. Environ. Microbiol. 57: 1139–1145

    Google Scholar 

  • Fahmy MK (1992) Treatment of sulphite pulp bleaching effluents in anaerobic/aerobic fluidized biofilm reactors Ph.D. Dissertation, Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  • Fathepure BZ & Vogel TM (1991) Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor. Appl. Environ. Microbiol. 57: 3418–3422

    Google Scholar 

  • Fee JA (1982) Is superoxide important in oxygen poisoning? Trends Biochem. Sci. 7: 84–86 Ferguson JF (1994) Anaerobic and aerobic treatment for AOX removal. Wat. Sci. Tech. (in press)

    Google Scholar 

  • Ferguson TJ & Mah R (1983) Isolation and characterization of an H2-oxidizing thermophilic methanogen. Appl. Environ. Microbiol. 45: 265–274

    Google Scholar 

  • Fetzer S & Conrad R (1993) Effect of redox potential on methanogenesis by Methanosarcina barkeri. Arch. Microbiol. 160: 108–113

    Google Scholar 

  • Fetzer S, Bak F & Conrad R (1993) Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol. Ecol. 12: 107–115

    Google Scholar 

  • Field JA & Lettinga G (1987) The methanogenic toxicity and anaerobic degradability of a hydrolyzable tannin. Wat. Res. 21: 367–374

    Google Scholar 

  • Field JA & Lettinga G (1989) The effect of oxidative coloration on the methanogenic toxicity and anaerobic biodegradability of phenols. Biological Wastes 29: 161–179

    Google Scholar 

  • Field JA & Lettinga G (1991) Treatment and detoxification of aqueous spruce bark extracts by Aspergillus niger. Wat. Sci. Tech. 24 (3/4): 127–137

    Google Scholar 

  • Field JA & Lettinga G (1992) Biodegradation of tannins. In: Sigel H (Ed) Metal Ions in Biological Systems. Volume 28: Degradation of Environmental Pollutants by Microorganisms and their Metalloenzymes (pp. 61–97). Marcel Dekker, Inc., New York

    Google Scholar 

  • Field JA, Kortekaas S & Lettinga G (1989) The tannin theory of methanogenic toxicity. Biological Wastes 29: 241–262

    Google Scholar 

  • Field JA, Lettinga G & Habets LHA (1990) Oxidative detoxification of aqueous bark extracts. Part I: autoxidation. J. Chem. Technol. Biotechnol. 49: 15–33

    Google Scholar 

  • Fitzsimons R, Ek M & Eriksson KEL (1990) Anaerobic dechlorination/degradation of chlorinated organic compounds of different molecular masses in bleach plant effluents. Environ. Sci. Technol. 24: 1744–1748

    Google Scholar 

  • Fogel S, Lancione RL & Sewall AE (1982) Enhanced biodegradation of methoxychlor in soil under sequential environmental conditions. Appl. Environ. Microbiol. 44: 113–120

    Google Scholar 

  • Fredete V, Plante C & Roy A (1967) Numerical data concerning the sensitivity of anaerobic bacteria to oxygen. J. Bacteriol. 94: 2012–2017

    Google Scholar 

  • Freitag D, Scheunert I, Klein W & Korte F (1984) Long-term fate of 4-chloroaniline-14C in soil and plants under outdoor conditions. A contribution to terrestrial ecotoxicology of chemicals. J. Agric. Food Chem. 32: 203–207

    Google Scholar 

  • Fuchs G, Mohamed MES, Altenschmidt U, Koch J, Lack A, Brackmann R, Lochmeyer C & Oswald B (1994) Biochemistry of anaerobic biodegradation of aromatic compounds. In: Ratledge C (Ed) Biochemistry of Microbial Degradation (pp. 513–553). Kluwer Academic Publ., Dordrecht

    Google Scholar 

  • Funk SB, Roberts DJ, Crawford DL & Crawford RL (1993) Initialphase optimization for bioremediation of munition compound-contaminated soils. Appl. Environ. Microbiol. 59: 2171–77

    Google Scholar 

  • Furukawa K, Tomizuka N & Kamibayashi A (1981) Metabolic breakdown of Kaneclors (Polychlorobiphenyls) and their products by Acinebacter sp. Appl. Environ. Microbiol. 46: 140–145

    Google Scholar 

  • Geankoplis CJ (1983) Transport Processes and Unit Operations. Prentice Hall, New Jersey, USA

    Google Scholar 

  • Gerritse J & Gottschal JC (1992) Mineralization of the herbicide 2,3,6-trichlorobenzoic acid by a co-culture of anaerobic and aerobic bacteria. FEMS Microbiol. Ecol. 101: 89–98

    Google Scholar 

  • Gerritse J & Gottschal JC (1993) Two-membered mixed cultures of methanogenic and aerobic bacteria in O2-limited chemostats. J. Gen. Microbiol. 139: 1853–1860

    Google Scholar 

  • Gerritse J, Schut F & Gottschal JC (1990) Mixed chemostat cultures of obligately aerobic and fermentative or methanogenic bacteria grown under oxygen-limiting conditions. FEMS Microbiol. Lett. 66: 87–94

    Google Scholar 

  • Gibson SA & Sulfita JM (1990) Anaerobic biodegradation of 2,4,5-trichlorophenoxyacetic acid in samples from a methanogenic aquifer: Stimulation by short-chain organic acids and alcohols. Appl. Environ. Microbiol. 56: 1825–1832

    Google Scholar 

  • Glaesser A, Liebelt U & Hempel DC (1992) Design of a two-stage process for total degradation of azo dyes. DECHEMA Biotechnol. Conf. 5B: 1085–1088

    Google Scholar 

  • Gorontzy T, Kuver J & Blotevogel KH (1993) Microbial transformation of nitroaromatic compounds under anaerobic conditions. J. Gen. Microbiol. 139: 1331–1336

    Google Scholar 

  • Gottschalk G & Peinemann S (1992) The anaerobic way of life. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The Prokaryotes (pp. 300–311). Springer-Verlag, New York

    Google Scholar 

  • Grbic-Galic D (1990) Anaerobic microbial transformation of nonoxygenated aromatic and alicyclic compounds in soil, subsurface and freshwater sediments. In: Bollag JM & Stotzky G (Eds) Soil Biochemistry Volume 6 (pp. 117–189). Marcel Dekker, New York

    Google Scholar 

  • Gribble GW (1992) Naturally occurring organohalogen compounds — a survey. J. Nat. Prod. (Lloydia) 55: 1353–1395

    Google Scholar 

  • Groenewegen PEJ, van den Tweel WJJ & de Bont JAM (1992) Anaerobic bioformation of 4-hydroxybenzoate from 4-chlorobenzoate by the coryneform bacterium NTB-1. Appl. Microbiol. Biotechnol. 36: 541–547

    Google Scholar 

  • Groenewegen PEJ & de Bont JAM (1992) Degradation of 4-nitrobenzoate via 4-hydroxylaminobenzoate and 3,4-dihydroxybenzoate inComamonas acidovorans NBA-10. Arch. Microbiol. 158: 381–386

    Google Scholar 

  • Guenzi WD & Beard WE (1968) Anaerobic conversion of DDT to DDD and aerobic stability of DDT in soil. Soil Sci. Soc. Amer. Proc. 32: 522–524

    Google Scholar 

  • Haggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol. Rev. 103: 29–72

    Google Scholar 

  • Haggblom M & Salkinoja-Salonen M (1991) Biodegradability of chlorinated organic compounds in pulp bleaching effluents. Water Sci. Technol. (1991) 24(3–4): 161–170

    Google Scholar 

  • Haggblom MM, Berman MH, Frazer AC & Young LY (1993) Anaerobic o-demethylation of chlorinated guaiacols by Acetobacterium woodii and Eubacterium limosum. Biodegradation 4: 107–114

    Google Scholar 

  • Hakulinen R & Salkinoja-Salonen (1982) Treatment of pulp and paper industry wastewaters in an anaerobic fluidised bed reactor. Process Biochem. 17 (March–April): 18–22

  • Hallas LE & Alexander M (1983) Microbial transformation of nitroaromatic compounds in sewage effluent. Appl. Environ. Microbiol. 45: 1234–1241

    Google Scholar 

  • Hatcher PG, Bortiatynski JM, Minard R, Dec J & J-Bollag M (1993) Use of high resolution 13CNMR to examine the enzymatic covalent binding of 13C-labeled 2,4-dichlorophenol to humic substances. Environ. Sci. Technol. 27: 2098–2103

    Google Scholar 

  • Haug W, Schmidt A, Noertemann B, Hempel DC, Stolz A & Knackmuss HJ (1991) Mineralization of the sulfonated azo dye Mordant-Yellow-3 by a 6-aminonaphthalene-2-sulfonate degrading bacterial consortium. Appl. Environ. Microbiol. 57: 3144–3149

    Google Scholar 

  • Hendriksen HV & Ahring BK (1993) Anaerobic dechlorination of pentachlorophenol in fixed-film and upflow anaerobic sludge blanket reactor using different inocula. Biodegradation 3: 399–408

    Google Scholar 

  • Hodin F, Boreén H, Grimvall A & Karlsson S (1991) Formation of chlorophenols and related compounds in natural and technical chlorination processes. Wat. Sci. Tech. 3/4: 403–410

    Google Scholar 

  • Holliger C, Schraa G, Stams AJM & Zehnder AJB (1992) Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene. Appl. Environ. Microbiol. 58: 1636–1644

    Google Scholar 

  • Hooijmans CM (1990) Diffusion coupled with bioconversion in immobilized systems. Ph.D. Thesis, Technische Universiteit, Delft, The Netherlands

    Google Scholar 

  • Horowitz A, Shelton DR, Cornell CP & Tiedje JM (1981) Anaerobic degradation of aromatic compounds in sediments and digested sludge. Dev. Ind. Microbiol. 23: 435–444

    Google Scholar 

  • Hrudey SE, Knettig E, Daignault SA & Fedorak PM (1987) Anaerobic biodegradation of monochlorophenols. Environ. Technol. Lett 8: 65–76

    Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JB & Ribbons DW (Eds) Methods in Microbiology, Vol. 3B (pp. 117–132). Academic Press, New York

    Google Scholar 

  • Huser BA, Wuhrmann K & Zehnder AJB (1982)Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non hydrogen oxidizing methane bacterium. Arch. Microbiol. 132: 1–9

    Google Scholar 

  • Hutchins SR (1993) Biotransformation and mineralization of alkylbenzenes under denitrifying conditions. Environ. Toxicol. Chem. 12: 1413–1423

    Google Scholar 

  • Hutzinger O & Veerkamp W (1981) Xenobiotic chemicals with pollution potential. In: Leisinger T, Hutter R, Cook AM & Nuesch J (Eds) Microbial Degradation of Xenobiotic and Recalcitrant Compounds (pp. 3–45). Academic Press, London

    Google Scholar 

  • Jianrong Z, Yanru Y, Huren A & Yi Q (1994) A study of dyewaste treatment using anaerobic-aerobic process. In: Proceedings of the Seventh International Symposium of Anaerobic Digestion, Cape Town, South Africa (pp. 360–363)

  • Jokela JJ, Pellinen J & Salkinoja-Salonen M (1987) Initial steps in the pathway for bacterial degradation of two tetrametric lignin model compounds. Appl. Environ. Microbiol. 53: 2642–2649

    Google Scholar 

  • Jokela JJ, Laine M, Ek M & Salkinoja-Salonen M (1993) Effect of biological treatment on halogenated organics in bleached kraft pulp mill effluents studied by molecular weight distribution analysis. Environ. Sci. Technol. 27: 547–557

    Google Scholar 

  • Joshi DK & Gold MH (1993) Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycetePhanerochaete chrysosporium. Appl. Environ. Microbiol. 59: 1779–1785

    Google Scholar 

  • Jurgensen BB (1977) Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar. Biol. 41: 7–17

    Google Scholar 

  • Kaake RH, Roberts DJ, Stevens TO, Crawford RL & Crawford DL (1992) Bioremediation of soils contaminated with the herbicide 2-sec-butyl-4,6-dinitrophenol (dinoseb). Appl. Environ. Microbiol. 58: 1683–1689

    Google Scholar 

  • Kafkewitz D, Armenante PM, Lewandowski G & Kung CM (1992) Dehalogenation and mineralization of 2,4,6-trichlorophenol by the sequential activity of anaerobic and aerobic microbial populations. Biotechnol. Lett. 14: 143–148

    Google Scholar 

  • Kaiser JP & Hanselmann KW (1982) Fermentative metabolism of substituted monoaromatic compounds by a bacterial community from anaerobic sediments. Arch. Microbiol. 133: 185–194

    Google Scholar 

  • Kaplan DL & Kaplan AM (1982) Thermophilic biotransformations of 2,4,6-trinitrotoluene under simulated composting conditions. Appl. Environ. Microbiol. 44: 757–760

    Google Scholar 

  • Kato M, Field JA & Lettinga G (1993a) Methanogenesis in granular sludge exposed to oxygen. FEMS Microbiol. Lett. 114: 317–324

    Google Scholar 

  • Kato M, Field JA & Lettinga G (1993b) The high tolerance of methanogens in granular sludge to oxygen. Biotechnol. Bioengineer 42: 1360–1366

    Google Scholar 

  • Kiener A & Leisinger T (1983) Oxygen sensitivity of methanogenic bacteria. Syst. Appl. Microbiol. 4: 305–312

    Google Scholar 

  • Kirby TW, Lancaster-Jr JR & Fridovich I (1981) Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch. Biochem. Biophysics 210: 140–148

    Google Scholar 

  • Kirk TK & Farrell RL (1987) Enzymatic ‘combustion’: The microbial degradation of lignin. Ann. Rev. Microbiol. 41: 465–505

    Google Scholar 

  • Klibanov AM & Morris ED (1981) Horseradish peroxidase for the removal of carcinogenic aromatic amines from water. Enzyme Microb. Technol. 3: 119–122

    Google Scholar 

  • Klibanov AM, Alberti BN, Morris ED & Felshin LM (1980) Enzymatic removal of toxic phenols and anilines from waste waters. J. Appl. Biochem. 2: 414–421

    Google Scholar 

  • Knackmuss HJ (1992) Potentials and limitations of microbes to degrade xenobiotics. In: DECHEMA Preprints Soil Decontamination Using Biological Processes, 6–9 December, 1992, Karlsruhe (pp. 3–9)

  • Knackmuss HJ (1981) Degradation of halogenated and sulfonated hydrocarbons. In: Leisinger T, Hutter R, Cook AM & Nuesch J (Eds) Microbial Degradation of Xenobiotic and Recalcitrant Compounds (pp. 189–212). Academic Press, London

    Google Scholar 

  • Koch J & Fuchs G (1992) Enzymatic reduction of benzoyl-CoA to alicyclic compounds, a key reaction in anaerobic aromatic metabolism. Eur J Biochem 205: 195–202

    Google Scholar 

  • Kulla HG (1981) Aerobic bacterial degradation of azo dyes. In: Leisinger T, Hutter R, Cook AM & Nuesch J (Eds) Microbial Degradation of Xenobiotics and Recalcitrant Compounds (pp. 387–398). Academic Press, London

    Google Scholar 

  • Lack A & Fuchs G (1994) Evidence that phenol phosphorylation to phenylphosphate is the first step in anaerobic phenol metabolism in a denitrifyingPseudomonas sp. Arch Microbiol 161: 132–139

    Google Scholar 

  • LaFond RA & Ferguson JF (1991) Anaerobic and aerobic treatment processes for removal of chlorinated organics from kraft bleaching wastes. In: Proceedings TAPPI Environmental Conference, San Antonio, Texas, April 7–10, 1991, TAPPI Press, Atlanta, GA (pp. 797–805)

    Google Scholar 

  • Lamar TL, Glaser JA & Kirk TK (1990) Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white-rot basidiomycete Phanerochaete chrysosporium: mineralization, volatilization and depletion of PCP. Soil Biol. Biochem 22: 433–440

    Google Scholar 

  • Leuenberger C, Giger W, Coney R, Graydon JW & Molnar-Kubica E (1985) Persistent chemicals in pulp mill effluents: Occurrence and behaviour in an activated sludge treatment plant. Wat. Res. 19: 885–894

    Google Scholar 

  • Liu D, Thomson K & Anderson AC (1984) Identification of nitroso compounds from biotransformation of 2,4-dintrotoluene. Appl. Environ. Microbiol. 47: 1295–1298

    Google Scholar 

  • Liu S & Sulfita JM (1993) Ecology and evolution of microbial populations for bioremediation. TIBTECH 11: 344–352

    Google Scholar 

  • Loesche WJ (1969) Oxygen sensitivity of various anaerobic bacteria. Appl. Microbiol. 18: 723–727 Lyr H (1963) Enzymatische detoxifikation chlorieter phenole. Phytophatol. Z. 47: 73–83

    Google Scholar 

  • Madsen T & Aamand J (1991) Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl. Environ. Microbiol. 57: 2453–2458

    Google Scholar 

  • Malaney GW (1960) Oxidative abilities of aniline-acclimated activated sludge. JWPFC 32: 1300–1311

    Google Scholar 

  • Maloney SW, Manem J, Mallevialle J & Flessinger F (1986) Transformation of trace organic compounds in drinking water by enzymatic oxidative coupling. Environ. Sci. Technol. 20: 249–253

    Google Scholar 

  • Marinucci AC & Bartha R (1979) Biodegradation of 1,2,3- and 1,2,4-trichlorobenzene in soil and in liquid enrichment cultures. Appl. Environ. Microbiol. 38: 811–817

    Google Scholar 

  • Marschall C, Frenzel P & Cypionka H (1993) Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch. Microbiol. 159: 168–173

    Google Scholar 

  • Martin JH & Savage DC (1988) Degradation of DNA in cells and extracts of the obligately anaerobic bacteriumRoseburia cecicola upon exposure to air. Appl. Environ. Microbiol. 54: 1619–1621

    Google Scholar 

  • Marvin-Sikkema FD & de Bont JAM (1994) Degradation of nitroaromatic compounds by microorganisms. Appl. Microbiol. Biotechnol. (in press)

  • Mavoungou R, Masse R & Sylvestre M (1991) Microbial dehalogenation of 4,4′-dichlorobiphenyl under anaerobic conditions. Sci. Total Environ. 101: 263–68

    Google Scholar 

  • Mazumder TK, Nishio N, Fukuzaki S & Nagai S (1987) Production of extracellular vitamin B-12 compounds from methanol byMethanosarcina barkeri. Appl. Microbiol. Biotechnol. 26: 511–516

    Google Scholar 

  • McCormick NG, Feeherry FE & Levinson HS (1976) Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 31: 949–958

    Google Scholar 

  • McCormick NG, Cornell JH & Kaplan AM (1978) Identification of biotransformation products from 2,4-dinitrotoluene. Appl. Environ. Microbiol. 35: 945–948

    Google Scholar 

  • Means JC, Wood SG, Hassett JJ & Banwart WJ (1980) Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol. 14: 1525–1528

    Google Scholar 

  • Mechsner K & Wuhrmann K (1982) Cell permeability as a rate limiting factor in the microbial reduction of sulfonated azo dyes. Europ. J. Appl. Microbiol. Biotechnol. 15: 123–126

    Google Scholar 

  • Meyer U (1981) Biodegradation of synthetic organic colorants. In: Leisinger T, Hutter R, Cook AM & Nuesch J (Eds) Microbial Degradation of Xenobiotics and Recalcitrant Compounds (pp. 371–385). Academic Press, London

    Google Scholar 

  • Mihelcic JR & Luthy RG (1988a) Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl. Environ. Microbiol. 54: 1182–1187

    Google Scholar 

  • Mihelcic JR & Luthy RG (1988b) Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Appl. Environ. Microbiol. 54: 1188–1198

    Google Scholar 

  • Mikesell MD & Boyd SA (1986) Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl. Environ. Microbiol. 52: 861–865

    Google Scholar 

  • Mikesell MD & Boyd SA (1988) Enhancement of pentachlorophenol degradation in soil through induced anaerobiosis and bioaugmentation with anaerobic sewage sludge. Environ. Sci. Technol. 22: 1411–1414

    Google Scholar 

  • Mohn WW & Kennedy KJ (1992) Limited degradation of chlorophenols by anaerobic sludge granules. Appl. Environ. Microbiol. 58: 2131–2136

    Google Scholar 

  • Mohn WW & Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol. Rev. 56: 482–507

    Google Scholar 

  • Morris JG (1979) Nature of oxygen toxicity in anaerobic microorganisms. In: Shilo M (Ed) Strategies of Microbial Life in Extreme Environments (pp. 149–162). Verlag Chemie, Weinheim

    Google Scholar 

  • Neilson AH, Allard AS, Lindgren C & Remberger M (1987) Transformation of chloroguaiacols, chloroveratroles and chlorocatechols by stable consortia of anaerobic bacteria. Appl. Environ. Microbiol. 53: 2511–2519

    Google Scholar 

  • Neumann A, Scholz-Muramatsu H & Diekert G (1994) Tetrachloroethene dechlorination to cis-1,2-dichloroethene in cell suspensions and cell extracts ofDehalosprillium multivorans, spec. nov. In: Bioengineering Sonderausgabe zur Gemeinsamen Fruhjahrstagung der VAAM und DGHM, 7–9 March, 1994, Hannover (pp. 82).

  • Noyola A & Moreno G (1994) Granule production from raw waste activated sludge. In: Proceedings of the Seventh International Symposium on Anaerobic Digestion, Cape Town, South Africa (pp. 765–774)

  • Oberbremer A, Müller-Hurtig R & Wagner F (1990) Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl. Microbiol. Biotechnol. 32: 485–489

    Google Scholar 

  • Oberg LG, Glas B, Swanson SE, Rappe C & Paul KG (1990) Peroxidase catalyzed oxidation of chlorophenols to polychlorinated dibenzo-p-dioxins and dibenzofurans. Arch. Environ. Contam. Toxicol. 19: 930–938

    Google Scholar 

  • O'Brien RW & Morris JG (1971) Oxygen and the growth and metabolism ofClostridium acetobutylicum. J. Gen. Microbiol. 68: 307–318

    Google Scholar 

  • O'Connor OA & Young LY (1993) Effect of nitrogen limitation on the biodegradability and toxicity of nitro- and aminophenol isomers to methanogenesis. Arch. Environ. Contam. Toxicol. 25: 285–291

    Google Scholar 

  • Okey RW & Bogan RH (1965) Apparent involvement of electron mechanisms in limiting metabolism of pesticides. JWPCF 37(5): 692–712

    Google Scholar 

  • Onderdonk AB, Johnston J, Mayhew JW & Gorbach SL (1976) Effect of dissolved oxygen and Eh onBacteroides fragilis during continuous culture. Appl. Environ. Microbiol. 31: 168–172

    Google Scholar 

  • Pagga U & Brown D (1986) The degradation of dyestuffs: Part II, behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere 15: 479–491

    Google Scholar 

  • Parsons J (1992) Biodegradation of chlorinated dibenzo-p-dioxinsin the presence of suspended sediments. In: DECHEMA Preprints Soil Decontamination Using Biological Processes, Karlsruhe (pp. 564–569)

  • Peters AC, Wimpenny JWT & Coombs JP (1987) Oxygen profiles in, and in the agar beneath, colonies ofBacillus cereus, Staphylococcus albus andEscherichia coli. J. Gen. Microbiol. 133: 1257–1263

    Google Scholar 

  • Pfaender FK & Alexander M (1972) Extensive microbial degradation of DDTin vitro and DDT metabolism by natural communities. J. Agric. Food Chem. 20: 842–846

    Google Scholar 

  • Pirt SJ & Lee YK (1983) Enhancement of methanogenesis by traces of oxygen in bacterial digestion of biomass. FEMS Microbiol. Lett. 18: 61–63

    Google Scholar 

  • Pitter P (1976) Determination of biological degradability of organic substances. Wat. Res. 10: 231–235

    Google Scholar 

  • Puhakka JA & Jarvinen K (1992) Aerobic fluidized-bed treatment of polychlorinated phenolic wood preservative constituents. Wat. Res. 26: 765–770

    Google Scholar 

  • Quensen-III JF, Tiedje JM & Boyd SA (1988) Reductive dechlorination of polychlorinated biphenyls by anacerobic microorganisms from sediments. Science 242: 752–754

    Google Scholar 

  • Ramanand K, Balba MT & Duffy J (1993) Reductive dehalogenation of chlorinated benzenes and toluenes under methanogenic conditions. Appl. Environ. Microbiol. 59: 3266–3272

    Google Scholar 

  • Revsbech NP, Christensen PB, Nielsen LP & Svrensen J (1989) Denitrification in a trickling filter biofilm studied by a microsensor for oxygen and nitrous oxide. Wat. Res. 23: 867–871

    Google Scholar 

  • Roberton AM & Wolfe RS (1970) Adenosine triphosphate pools in Methanobacterium. J. Bacteriol. 102: 43–51

    Google Scholar 

  • Rochkind-Dubinsky ML, Sayler GS & Blackburn JW (1987) Microbiological Decomposition of Chlorinated Aromatic Compounds. Microbiology Series Vol 18. Marcel Dekker, New York

    Google Scholar 

  • Rolfe RD, Hentges DJ, Campbell BJ & Barret JT (1978) Factors related to the oxygen tolerance of anaerobic bacteria. Appl. Environ. Microbiol. 36: 306–313

    Google Scholar 

  • Ryan AJ, Roxon JJ & Sivayavirojana A (1968) Bacterial azo reduction: a metabolic reaction in mammals. Nature 219: 854–855

    Google Scholar 

  • Salkinoja-Salonen M, Valo R, Apajalahti J, Halukinen R, Silakoski L & Jaakkola T (1984) Biodegradation of chlorophenolic compounds in wastes from wood processing industry. In: Klug MJ & Reddy CA (Eds) Current Perspective in Microbial Ecology (pp. 668–676). American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Sander P, Wittich RM, Fortnagel P, Wilkes H & Francke W (1991) Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene byPseudomonas strains. Appl. Environ. Microbiol. 57: 1430–1440

    Google Scholar 

  • Schink B (1985) Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol. Ecol. 31: 9–77

    Google Scholar 

  • Schink B (1988a) Principles and limits of anaerobic degradation: environmental and technological aspects. In: Zehnder AJB (Ed) Biology of Anaerobic Microorganisms (pp. 771–846). John Wiley & Sons, New York

    Google Scholar 

  • Schink B (1988b) Fermentative degradation of nitrogenous aliphatic and aromatic compounds. In: Hall ER & Hobson PN (Eds) Anaerobic Digestion 1988, Proceedings of the 5th International Symposium on Anaerobic Digestion held in Bologna, Italy, 22–26 May, 1988 (pp. 459–464). Pergamon Press, Oxford

    Google Scholar 

  • Schink B (1991) Anaerobic news on phenols and aniline. In: Jacobson BN, Zeyer J, Jensen P, Westermann P & Ahring B (Eds) Anaerobic Biodegradation of Xenobiotic Compounds. Water Pollution Research Report 25 (pp. 9–13). Commission of the European Communities, Brussels

    Google Scholar 

  • Schink B (1992) Syntrophism among prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The Prokaryotes (pp. 276–299). Springer Verlag, New York

    Google Scholar 

  • Schink B & Pfennig N (1982) Fermentation of trihydroxybenzenes byPelobacter acidgalli gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch. Microbiol. 133: 195–201

    Google Scholar 

  • Schraa G, Boone ML, Jetten MSM, van Neerven ARW, Colberg PC & Zehnder AJB (1986) Degradation of 1,4-dichlorobenzene byAlcaligenes sp. strain A175. Appl. Environ. Microbiol. 52: 1374–1381

    Google Scholar 

  • Scott RI, Williams TN, Whitmore TN & Lloyd D (1983) Direct measurement of methanogenesis in anaerobic digestors by membrane inlet mass spectrometry. Eur. J. Appl. Microbiol. Biotechnol. 18: 236–241

    Google Scholar 

  • Shaul GM, Holdsworth TJ, Dempsey CR & Dostal KA (1991) Fate of water soluble azo dyes in the activated sludge process. Chemosphere 22: 107–119

    Google Scholar 

  • Shelton DR & Tiedje JM (1984) General method for determining anaerobic biodegradation potential. Appl. Environ. Microbiol. 47: 850–857

    Google Scholar 

  • Sierra R, Harbrecht J, Kortekaas S & Lettinga G (1990) The continuous anaerobic treatment of pulping wastewaters. J. Ferment. Bioengineer. 70: 119–127

    Google Scholar 

  • Sjoblad RD & Bollag JM (1977) Oxidative coupling of aromatic pesticide intermediates by a fungal phenol oxidase. Appl. Environ. Microbiol. 33: 906–910

    Google Scholar 

  • Sjoblad RD & Bollag JM (1981) Oxidative coupling of aromatic compounds by enzymes from soil microorganisms. In: Paul EA & Ladd JN (Eds) Soil Biochemistry Vol. 5 (pp. 113–152). Marcel Dekker, Incorp., New York

    Google Scholar 

  • Smith MR (1994) The physiology of aromatic hydrocarbon degrading bacterial: Ratledge C (Ed) Biochemistry of Microbial Degradation (pp. 347–378). Kluwer Academic Publ., Dordrecht

    Google Scholar 

  • Stahl JD & Aust SD (1993) Plasma membrane dependent reduction of 2,4,6-trinitrotoluene byPhanerochaete chrysosporium. Biochem. Biophys. Res. Comm. 192: 471–476

    Google Scholar 

  • Stevens TO, Crawford RL & Crawford DL (1991) Selection and isolation of bacteria capable of degrading dinoseb (2-sec-butyl-4,6-dinitrophenol). Biodegradation 2: 1–13

    Google Scholar 

  • Stevenson FJ (1982) Humus Chemistry. Wiley, New York

    Google Scholar 

  • Struijs J & Rogers JE (1989) Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol-acclimated pond sediments. Appl. Environ. Microbiol. 55: 2527–2531

    Google Scholar 

  • Subba-Rao RV & Alexander M (1977) Effect of chemical structure on the biodegradability of 1,1,1-trichloro-2,2′-bis(p-chlorophenyl) ethane (DDT). J. Agric. Food Chem. 25: 327–329

    Google Scholar 

  • Tanaka H, Kurosawa H & Murakami H (1986) Ethanol production from starch by a coimmobilized mixed culture system ofAspergillus awamori andZymomonas mobilis. Biotech. Bioeng. 28: 1761–1768

    Google Scholar 

  • Tatsumi K, Freyer A, Minard RD & Bollag JM (1994) Enzyme-mediated coupling of 3,4-dichloroaniline and ferulic acid: A model for pollutant binding to humic materials. Environ. Sci. Technol. 28: 210–215

    Google Scholar 

  • Thaller V & Turner JL (1972) Natural acetylenes. Part XXXV. Polyacetylenic acid and benzenoid metabolites from cultures of the fungus Lepista diemii Singer. J. Chem. Soc. Perkins Trans. 1972: 2032–2034

    Google Scholar 

  • Thauer RK, Jungermann K & Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180

    Google Scholar 

  • Thurnheer T, Kohler T, Cook AM & Leisinger T (1986) Orthanilic acid and analogues as carbon sources for bacteria: Growth physiology and enzymic desulphonation. J. Gen. Microbiol. 132: 1215–1220

    Google Scholar 

  • Thurnheer T, Cook AM & Leisinger T (1988) Co-culture of defined bacteria to degraded seven sulfonated aromatic compounds: efficiency, rates and phenotypic variation. Appl. Microbiol. Biotechnol. 29: 605–609

    Google Scholar 

  • Tiedje JM, Sextone AJ, Parkin TB, Revsbech NP & Shelton DR (1984) Anaerobic processes in soil. Plant Soil 76: 197–212

    Google Scholar 

  • Tiehm A & Zumft W (1992) Mobilization and biodegradation of polycyclic aromatic hydrocarbons in the presence of technical surfactants. In: Preprints Soil Decontamination Using Biological Processes, 6–9 December, 1992, Karlsruhe, DECHEMA, Frankfurt (pp. 274–280)

    Google Scholar 

  • Toussaint M, Commandeur LCM, Parsons JR, Beurskens JEM & de Wolf J (1992) Reductive dechlorination of 1,2,3,4-tetrachloro-dibenzo-p-dioxin by a bacterial consortium isolated from lake Ketelmeer sediment: preliminary results. In: DECHEMA Preprints Soil Decontamination Using Biological Processes, Karlsruhe (pp. 578–585)

  • Tucker ES, Saeger VW & Hicks O (1975) Activated sludge primary biodegradation of polychlorinated biphenyls. Bull. Environ. Cont. Toxicol. 14: 705–712

    Google Scholar 

  • Uotila JS, Kitunen VH, Apajalahti JHA & Salkinoja-Salonen MS (1992) Environment-dependent mechanism of dehalogenation byRhodococcus chlorophenolicus PCP-1. Appl. Microbiol. Biotechnol. 38: 408–412

    Google Scholar 

  • Valli K, Brock BJ, Joshi DK & Gold MH (1992) Degradation of 2,4-dinitrotoluene by the lignin-degrading fungusPhanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 221–228

    Google Scholar 

  • Valo R, Haggblom M & Salkinoja-Salonen MS (1990) Bioremediation of simulated ground water by immobilized bacteria. Wat. Res. 24: 253–258

    Google Scholar 

  • Van Dort HM & Bedard DL (1991) Reductive ortho and meta dechlorination of a polychlorinated biphenyl congener by anaerobic microorganisms. Appl. Environ. Microbiol. 67: 1576–1578

    Google Scholar 

  • Van der Meer JR, Roelofsen W, Schraa G & Zehnder AJB (1987) Degradation of low concentrations of 1,4-dichlorobenzene byPseudomonas sp. strain P51 in nonsterile soil columns. FEMS Microbiol. Ecol. 45: 333–341

    Google Scholar 

  • Vogel TM & Grbic-Galic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl. Environ. Microbiol. 52: 200–202

    Google Scholar 

  • Volkering F, Breure A & Van Andel JG (1993) Effect of micro-organisms on the bioavailability and biodegradation of crystalline naphthalene. Appl. Microbiol. Biotechnol. 40: 535–540

    Google Scholar 

  • Wackett JP & Schanke CA (1992) Mechanisms of reductive dehalogenation by tranqisition metal cofactors found in anaerobic bacteria. In: Sigel H (Ed) Metal Ions in Biological Systems. Volume 28: Degradation of Environmental Pollutants by Microorganisms and their Metalloenzymes (pp. 61–97). Marcel Dekker, Inc., New York

    Google Scholar 

  • Walden CC (1980) Biological effects of pulp and paper mill effluents. In: Moo-Young M & Campbell WR (Eds) Proceedings of the Sixth International Fermentation Symposium, Vol. 2, Fuels, Chemicals, Foods and Waste Treatment, July 20–25, London, Canada (pp. 669–676)

  • Walden WC & Hentges DJ (1975) Differential effects of oxygen and oxidation-reduction potential on the multiplication of three species of anaerobic intestinal bacteria. Appl. Microbiol. 30: 781–785

    Google Scholar 

  • Weber EJ (1991) Studies of benzidine-based dyes in sediment-water systems. Environ. Toxicol. Chem. 10: 609–618

    Google Scholar 

  • Weber EJ & Wolfe NL (1987) Kinetic studies of the reduction of aromatic azo compounds in anaerobic sediment/water systems. Environ. Toxicol. Chem. 6: 911–919

    Google Scholar 

  • Weber-Jr WJ, Jones BE & Katz LE (1987) Fate of toxic organic compounds in activated sludge and integrated PAC systems. Wat. Sci. Tech. 19: 471–482

    Google Scholar 

  • Weissenfels WD, H- Klewer J & Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl. Microbiol. Biotechnol. 36: 689–696

    Google Scholar 

  • Whitman WB, Bown TL & Boone DR (1992) The methanogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The Prokaryotes (pp. 719–797). Springer-Verlag, New York

    Google Scholar 

  • Wijffels RH, Eekhof MR, Tramper J, de-Beer D & van-den-Heuvel JC (1991) Growth and substrate consumption by immobilized Nitrobacter agilis: validation of a dynamic model. In: Proceedings of the International Symposium of Environmental Biotechnology, Vol. I. Royal Flemish Society of Engineers, Oostende, Belgium (pp. 697–699)

    Google Scholar 

  • Woods SL, Ferguson FJ & Benjamin MM (1989) Characterization of chlorophenol and chloromethoxybenzene biodegradation during anaerobic treatment. Environ. Sci. Technol. 23: 62–68

    Google Scholar 

  • Wu WM, Bhatnagar L & Zeikus JG (1993) Performance of anaerobic granules for degradation of pentachlorophenol. Appl. Environ. Microbiol. 59: 389–397

    Google Scholar 

  • Wu W, Hu J, Gu X, Zhao Y, Zhang H & Gu G (1987) Cultivation of anaerobic granular sludge in UASB reactors with aerobic activated sludge as seed. Wat. Res. 21: 789–799

    Google Scholar 

  • Wuhrmann K, Mechsner K & Kappeler T (1980) Investigation on rate — determining factors in the microbial reduction of azo dyes. Eur. J. Appl. Microbiol. Biotechnol. 9: 325–338

    Google Scholar 

  • Yagi O & Sudo R (1980) Degradation of polychlorinated biphenyls by microorganisms. JWPCF 52: 1035–1043

    Google Scholar 

  • Yen CPC, Perenich TA & Baughman GL (1991) Fate of commercial disperse dyes in sediments. Environ. Toxicol. Chem. 6: 1009–1017.

    Google Scholar 

  • Zaoyan Y, Ke S, Guangliang S, Fan Y, Jinshan D & Huanian M (1992) Anaerobic-aerobic treatment of a dye waste-water by combination with activated sludge. Wat. Sci. Technol. 26: 2093–2096

    Google Scholar 

  • Zehnder AJB & Wuhrmann K (1977) Physiology of aMethanobacterium strain AZ. Arch. Microbiol. 111: 199–205

    Google Scholar 

  • Zeyer J, Kuhn EP & Schwarzenbach RP (1986) Rapid microbial mineralization of toluene and 1,3-dimethylbenzene in the absence of molecular oxygen. Appl. Environ. Microbiol. 52: 944–947

    Google Scholar 

  • Zimmermann T, Gasser F, Kulla HG & Leisinger T (1984) Comparison of two bacterial azoreductases acquired during adaptation to growth on azo dyes. Arch. Microbiol. 138: 37–43

    Google Scholar 

  • Zimmermann W (1990) Degradation of lignin by bacteria. J Biotechnol 13: 119–130

    Google Scholar 

  • Zitomer DH & Speece RE (1993) Sequential environments for enhanced biotransformation of aqueous contaminants. Environ. Sci. Technol. 27: 227–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, J.A., Stams, A.J.M., Kato, M. et al. Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie van Leeuwenhoek 67, 47–77 (1995). https://doi.org/10.1007/BF00872195

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00872195

Key words

Navigation