Skip to main content
Log in

A-factor and streptomycin biosynthesis inStreptomyces griseus

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Accumulating data have shown that the metabolites with a γ-butyrolactone ring functions as an autoregulatory factor or a microbial hormone for the expression of various phenotypes not only in a variety ofStreptomyces spp. but also in the distantly related bacteria. A-factor, as a representative of this type of autoregulators, triggers streptomycin biosynthesis and cellular differentiation inStreptomyces griseus. A model for the A-factor regulatory cascade on the basis of recent work is as follows. At an early step in the A-factor regulatory relay, the positive A-factor signal is first received by an A-factor receptor protein that is comparable in every aspect to eukaryotic hormone receptors, and then, via one or more regulatory steps, transmitted to an A-factor-responsive protein that binds to the upstream activation sequence of thestrR gene, a regulatory gene in the streptomycin biosynthetic gene cluster. The StrR protein thus induced appears to activate the other streptomycin biosynthetic genes. This review summarizes the characteristics of A-factor as a microbial hormone and the A-factor regulatory relay leading to streptomycin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamidis T & Champness W (1992) Genetic analysis ofabsB, aStreptomyces coelicolor locus involved in global antibiotic regulation. J Bacteriol 174: 4622–4628

    PubMed  Google Scholar 

  • Adamidis T, Riggle P & Champness W (1990) Mutations in a newStreptomyces coelicolor locus which globally block antibiotic synthesis but not sporulation. J Bacteriol 172: 2962–2969

    PubMed  Google Scholar 

  • Anisova LN, Blinova IN, Efremenkova OV, Koz'min YP, Onoprienko VV, Smirnova GM & Khokhlov AS (1984) Development regulators inStreptomyces coelicolor A3(2). Biol Bull Acad Sci USSR 11: 75–84

    Google Scholar 

  • Beppu T (1992) Secondary metabolites as chemical signals for cellular differentiation. Gene 115: 159–165

    PubMed  Google Scholar 

  • Chater KF (1989) Sporulation inStreptomyces. In: Smith I, Slepecky RA & Setlow P (Eds) Regulation of Procaryotic Development: Structural and Functional Analysis of Bacterial Sporulation and Germination. (pp 277–299). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Chatterjee S, Vijayakumar EKS, Franco CMM, Borde UP, Blumbach J & Ganguli BN (1991) Butalactin: a new butanolide antibiotic fromStreptomyces corchorusii. Tetrahedron Lett 32: 141–144

    Google Scholar 

  • Distler J, Ebert A, Mansouri K, Pissowotzki K, Stockmann M & Piepersberg W (1987) Gene cluster for streptomycin biosynthesis inStreptomyces griseus: nucleotide sequence of three genes and analysis of transcriptional activity. Nucleic Acids Res 15: 8041–8056

    PubMed  Google Scholar 

  • Distler J, Mansouri K, Mayer G, Stockmann M & Piepersberg W (1992) Streptomycin biosynthesis and its regulation in streptomycetes. Gene 115: 105–111

    PubMed  Google Scholar 

  • Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH & Oppenheimer NJ (1981) Structural identification of autoinducer ofPhotobacterium fischeri luciferase. Biochemistry 20: 2444–2449

    PubMed  Google Scholar 

  • Eberhard A, Widrig CA, McBath P & Schineller JB (1986) Analogs of the autoinducer of bioluminescence inVibrio fischeri. Arch Microbiol 146: 35–40

    PubMed  Google Scholar 

  • Fernandez-Moreno MA, Martin-Triana AJ, Martinez E, Niemi J, Kieser HM, Hopwood DA & Malpartida F (1992)abaA, a new pleiotropic regulatory locus for antibiotic production inStreptomyces coelicolor. J Bacteriol 174: 2958–2967

    PubMed  Google Scholar 

  • Franco CMM, Borde UP, Vijayakumar EKS, Chatterjee S, Blumbach J & Ganguli BN (1991) Butalactin, a new butanolide antibiotic. Taxonomy, fermentation isolation and biological activity. J Antibiot 44: 225–231

    PubMed  Google Scholar 

  • Gräfe U, Eritt I, Hänel F, Friedrich W, Roth M, Röder B & Bormann EJ (1986) Factors governing polyketide and glycopeptide productions by streptomycetes. In: Kleinkauf H, van Döhren H, Dornauer H & Nesemann G (Eds) Regulation of Secondary Metabolite Formation. (pp 225–248). VCH Verlagsgesellschaft mbH, Weinheim, FRG

    Google Scholar 

  • Gräfe U, Reinhardt G, Schade W, Eritt I, Freck WF & Radics L (1983) Interspecific inducers of cytodifferentiation and anthracycline biosynthesis fromStreptomyces bikiniensis andS. cyaneofuscatus. Biotechnol Lett 5: 591–596

    Google Scholar 

  • Gräfe U, Schade W, Eritt I, Freck WF & Radics L (1982) A new inducer of anthracycline biosynthesis fromStreptomyces viridochromogenes. J Antibiot 35: 1722–1723

    PubMed  Google Scholar 

  • Hara O & Beppu T (1982a) Mutants blocked in streptomycin production inStreptomyces griseus — the role of A-factor. J Antibiot 35: 349–358

    PubMed  Google Scholar 

  • Hara O & Beppu T (1982b) Induction of streptomycin inactivating enzyme by A-factor inStreptomyces griseus. J Antibiot 35: 1208–1215

    PubMed  Google Scholar 

  • Hara O, Horinouchi S, Uozumi T & Beppu T (1983) Genetic analysis of A-factor synthesis inStreptomyces coelicolor A3(2) andStreptomyces griseus. J Gen Microbiol 129: 2939–2944

    PubMed  Google Scholar 

  • Hong S-K, Kito M, Beppu T & Horinouchi S (1991) Phosphorylation of the AfsR product, a global regulatory protein for secondary-metabolite formation inStreptomyces coelicolor A3(2). J Bacteriol 173: 2311–2318

    PubMed  Google Scholar 

  • Horinouchi S & Beppu T (1990) Autoregulatory factors of secondary metabolism and morphogenesis in actinomycetes. Crit Rev Biotechnol 10: 191–204

    PubMed  Google Scholar 

  • Horinouchi S & Beppu T (1992a) Autoregulatory factors and communication in actinomycetes. Annu Rev Microbiol 46: 377–398

    PubMed  Google Scholar 

  • Horinouchi S & Beppu T (1992b) Regulation of secondary metabolism and cell differentiation inStreptomyces: A-factor as a microbial hormone and the AfsR protein as a component of a two-component regulatory system. Gene 115: 167–172

    PubMed  Google Scholar 

  • Horinouchi S, Hara O & Beppu T (1984) Unstable genetic determinant of A-factor biosynthesis in streptomycin-producing organisms: cloning and characterization. J Bacteriol 158: 481–487

    PubMed  Google Scholar 

  • Horinouchi S, Nishiyama M, Suzuki H, Kumada Y & Beppu T (1985) The clonedStreptomyces bikiniensis A-factor determinant. J Antibiot 38: 636–641

    PubMed  Google Scholar 

  • Ishizuka H, Horinouchi S, Kieser HM, Hopwood DA & Beppu T (1992) A putative two-component regulatory system involved in secondary metabolism inStreptomyces spp. J Bacteriol 174: 7585–7594

    PubMed  Google Scholar 

  • Khokhlov AS (1982) Low molecular weight microbial bioregulators of secondary metabolism. In: Krumphanzl V, Sikyta B & Vanek Z (Eds) Overproduction of Microbial Products. (pp 97–109). Academic Press, London

    Google Scholar 

  • Khokhlov AS, Anisova LN, Tovarova II, Kleiner EY, Kovalenko IV, Krasilnikova OI, Kornitskaya EY & Pliner SA (1973) Effect of A-factor on the growth of asporogenous mutants ofStreptomyces griseus, not producing this factor. Z Allg Mikrobiol 13: 647–655

    PubMed  Google Scholar 

  • Khokhlov AS, Tovarova II, Borisova LN, Pliner SA, Schevchenko LA, Kornitskaya EY, Ivkina NS & Rapoport IA (1967) A-factor responsible for the biosynthesis of streptomycin by a mutant strain ofActinomyces streptomycini. Dokl Akad Nauk SSSR 177: 232–235

    PubMed  Google Scholar 

  • Kim HS, Nihira T, Tada H, Yanagimoto M & Yamada Y (1989) Identification of binding protein of virginiae butanolide C, an autoregulator in virginiamycin production fromStreptomyces virginiae. J Antibiot 42: 769–778

    PubMed  Google Scholar 

  • Kinashi H, Shimaji M & Sakai A (1987) Giant linear plasmids inStreptomyces which code for antibiotic biosynthetic genes. Nature 328: 454–456

    PubMed  Google Scholar 

  • Koo H-S, Wu H-M & Crothers KM (1986) DNA bending at adenine thymine tracts. Nature 320: 501–506

    PubMed  Google Scholar 

  • Mansouri K, Pissowotzki K, Distler J, Mayer G, Braun C, Ebert A & Piepersberg W (1989) Genetics of streptomycin production. In: Hershberger CL, Queener SW & Hegeman G (Eds) Genetics and Molecular Biology of Industrial Microorganisms. (pp 61–67). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Miyake K, Horinouchi S, Yoshida M, Chiba N, Mori K, Nogawa N, Morikawa N & Beppu T (1989) Detection and properties of A-factor-binding protein fromStreptomyces griseus. J Bacteriol 171: 7298–7302

    Google Scholar 

  • Miyake K, Kuzuyama T, Horinouchi S & Beppu T (1990) The A-factor-binding protein ofStreptomyces griseus negatively controls streptomycin production and sporulation. J Bacteriol 172: 3003–3008

    PubMed  Google Scholar 

  • Mizuno T (1987) Static bend of DNA helix at the activator recognition site of theompF promoter inEscherichia coli. Gene 54: 57–64

    PubMed  Google Scholar 

  • Mori K & Yamane K (1982) Synthesis of optically active forms of A-factor, the inducer of streptomycin biosynthesis in inactive mutants ofStreptomyces griseus. Tetrahedron 38: 2919–2921

    Google Scholar 

  • Nihira T, Shimizu Y, Kim HS & Yamada Y (1988) Structure activity relationships of virginiae butanolide C, an inducer of virginiamycin production inStreptomyces virginiae. J Antibiot 41: 1828–1837

    PubMed  Google Scholar 

  • Ohkishi H, Miyasaka K, Horisaka T, Chou H & Watanabe Y (1988) Strain improvement of a nosiheptide producer,Streptomyces actuosus 40037. In: Fujiwara A (Ed) Proc. 3rd Franco-Japanese Symp. The Impact of Genetics on Industrial Microorganisms. (pp 47–49). Sansei-Do, Tokyo

    Google Scholar 

  • Retzlaff L, Mayer G, Beyer S, Ahlert J, Verseck S, Distler J & Pierpersberg W (1993) Streptomycin production in streptomycetes: a progress report. In: Baltz RH, Hegeman GD & Skatrud PL (Eds) Industrial Microorganisms: Basic and Applied Molecular Genetics. (pp 183–194). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Snyder M, Buchman AR & Davis RW (1986) Bent DNA at a yeast autonomously replicating sequence. Nature 324: 87–89

    PubMed  Google Scholar 

  • Ueda K, Miyake K, Horinouchi S & Beppu T (1993) A gene cluster involved in aerial mycelium formation inStreptomyces griseus encodes proteins similar to the response regulators of two-component regulatory systems and membrane translocators. J Bacteriol 175: 2006–2016

    PubMed  Google Scholar 

  • Vujaklija D, Horinouchi S & Beppu T (1993) Detection of an A-factor-responsive protein that binds to the upstream activation sequence ofstrR, a regulatory gene for streptomycin biosynthesis inStreptomyces griseus. J Bacteriol 175: 2652–2661

    PubMed  Google Scholar 

  • Vujaklija D, Ueda K, Hong S-K, Beppu T & Horinouchi S (1991) Identification of an A-factor-dependent promoter in the streptomycin biosynthetic gene cluster ofStreptomyces griseus. Mol Gen Genet 229: 119–128

    PubMed  Google Scholar 

  • Yamada Y, Sugamura K, Kondo K, Yanagimoto M & Okada H (1987) The structure of inducing factors for virginiamycin production inStreptomyces virginiae. J Antibiot 40: 496–504

    PubMed  Google Scholar 

  • Zhang L, Murphy PJ, Kerr A & Tate ME (1993)Agrobacterium conjugation and gene regulation byN-acyl-L-homoserine lactones. Nature 362: 446–448

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horinouchi, S., Beppu, T. A-factor and streptomycin biosynthesis inStreptomyces griseus . Antonie van Leeuwenhoek 64, 177–186 (1993). https://doi.org/10.1007/BF00873026

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00873026

Key words

Navigation