Skip to main content
Log in

A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

In this paper we consider a vertical wavenumber spectrum of vertically propagating gravity waves impinging on a rapid increase in atmospheric stability. If the high-wavenumber range is saturated below the increase, as is usually observed, then the compression of vertical scales as the waves enter a region of higher stability results in that range becoming supersaturated, that is, the spectral amplitude becomes larger than the saturation limit. The supersaturated wave energy must then dissipate in a vertical distance of the order of a wavelength, resulting in an enhanced turbulent energy dissipation rate. If the wave spectrum is azimuthally anisotropic, the dissipation also results in an enhanced vertical divergence of the vertical flux of horizontal momentum and enhanced wave drag in the same region. Estimates of the enhanced dissipation rates and radar reflectivities appear to be consistent with the enhancements observed near the high-latitude summer mesopause. Estimates of the enhanced mean flow acceleration appear to be consistent with the wave drag that is needed near the tropopause and the high-latitude summer mesopause in large-scale models of the atmosphere. Thus, this process may play a significant role in determining the global effects of gravity waves on the large-scale circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D. G., andM. E. McIntyre (1976),Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration, J. Atmos. Sci.33, 2031–1048.

    Google Scholar 

  • Balsley, B. B., andD. A. Carter (1982),The spectrum of atmospheric velocity fluctuations at 8 and 86 km, Geophys. Res. Lett.9, 465–468.

    Google Scholar 

  • Balsley, B. B., W. L., Ecklund, andD. C. Fritts (1983),VHF echoes from the high-latitude mesosphere and lower thermosphere: Observations and interpretations, J. Atmos. Sci40, 2451–2466.

    Google Scholar 

  • Balsley, B. B., W. L. Ecklund, andD. C. Fritts,VHF echoes from the arctic mesosphere and lower thermosphere, Part I: Observations, inDynamics of the Middle Atmosphere (ed. J. R. Holton and T. Matsuno) (Terra Scientific Pub. Co. 1984) pp. 77–96.

  • Balsley, B. B., andR. Garello (1985),The kinetic energy density in the troposphere, stratosphere, and mesosphere: A preliminary study using the Poker Flat MST radar in Alaska, Radio Sci.20, 1355–1361.

    Google Scholar 

  • Booker, J. R., andF. P. Bretherton (1967),The critical layer for internal gravity waves in a shear flow, J. Fluid Mech.27, 513–539.

    Google Scholar 

  • Boyd, J. P. (1976),The noninteraction of waves with the zonally-averaged flow on a spherical earth and the inter-relationships of eddy fluxes of energy, heat and momentum, J. Atmos. Sci33, 2285–2291.

    Google Scholar 

  • Bretherton, F. P., andC. J. R. Garrett (1969),Wavetrains in inhomogeneous moving media Proc. Roy. Soc. LondonA 302, 529–554.

    Google Scholar 

  • Broutman, D. (1982),The interaction of short-wavelength internal waves with a background current, Ph.D. Thesis, Scripps Inst. of Ocean, Univ. of California, San Diego.

    Google Scholar 

  • Chao, W. C., andM. R. Schoeberl (1984),A note on the linear approximation of gravity wave saturation in the mesosphere, J. Atmos. Sci41, 1893–1898.

    Google Scholar 

  • Czechowsky, P., andR. Rüster (1985),Power spectra of mesospheric velocities in polar regions, Handbook for MAP18, 207–211.

    Google Scholar 

  • Desaubies, Y. J. F. (1976),Analytical representation of internal wave spectra, J. Phys. Oceanogr.6, 976–981.

    Google Scholar 

  • Dewan, E. M. (1979),Stratospheric wave spectra resembling turbulence, Science204, 832–835.

    Google Scholar 

  • Dewan, E. M., andR. E. Good (1986),Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere, J. Geophys. Res.91, 2742–2748.

    Google Scholar 

  • Dewan, E. M., N. Grossbard, A. F. Quesada, andR. E. Good (1984),Spectral analysis of 10 m resolution scalar velocity profiles in the stratosphere, Geophys. Res. Lett.11, 80–83, andCorrection to “Spectral analysis of...”, Geophys. Res. Lett.11, 624.

    Google Scholar 

  • Dunkerton, T. J. (1982),Stochastic parameterization of gravity wave stresses, J. Atmos. Sci.29, 1711–1725.

    Google Scholar 

  • Ecklund, W. L., andB. B. Balsley (1981),Long-term observations of the arctic mesosphere with the MST radar at Poker Flat Alaska, J. Geophys. Res.86, 7775–7780.

    Google Scholar 

  • Fritts, D. C. (1984),Gravity wave saturation in the middle atmosphere: A review of theory and observations, Rev. Geophys. Space Phys.22, 275–308.

    Google Scholar 

  • Fritts, D. C., andH.-G. Chou (1987),An investigation of the vertical wavenumber and frequency spectra of gravity wave motions in the lower stratosphere, J. Atmos. Sci.44, 3610–3624.

    Google Scholar 

  • Fritts, D. C. andT. J. Dunkerton (1985),Fluxes of heat and constituents due to convectively unstable gravity waves, J. Atmos. Sci.42, 549–556.

    Google Scholar 

  • Fritts, D. C. andP. K. Rastogi (1985),Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations, Radio Sci.20, 1247–1277.

    Google Scholar 

  • Fritts, D. C., T. Tsuda, T. Sato, S. Fukao, andS. Kato (1988),Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere. J. Atmos. Sci.45, 1741–1759.

    Google Scholar 

  • Fritts, D. C., andR. A. Vincent (1987),Mesospheric momentum flux studies at Adelaide, Australia: Observations and a gravity wave/tidal interaction model, J. Atmos. Sci.44, 605–619.

    Google Scholar 

  • Fukao, S., T. Sato, T. Tsuda, S. Kato, M. Inaba, andI. Kimura (1988),VHF Doppler radar determination of the momentum flux in the upper troposphere and lower stratosphere: Comparison between the three- and four-beam methods, J. Atmos. Oceanic Tech.5, 57–69.

    Google Scholar 

  • Garcia, R. R., andS. Solomon (1985),The effect of breaking gravity waves on the dynamical and chemical composition of the mesosphere and lower thermosphere, J. Geophys. Res.90, 3850–3868.

    Google Scholar 

  • Garrett, C. J. R., andW. H. Munk (1972),Space-time scales of internal waves, Geophys. Astrophys. Fluid Dyn.3, 225–235.

    Google Scholar 

  • Garrett, C. J. R., andW. H. Munk (1975),Space-time scales of internal waves: A progress report, J. Geophys. Res.80, 291–297.

    Google Scholar 

  • Hill, R. J., andS. F. Clifford (1978),Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation, J. Opt. Soc. Am.68, 892–899.

    Google Scholar 

  • Hocking, W. K. (1985),Turbulence in the region 80–120 km, MAP Handbook16, 290–304.

    Google Scholar 

  • Holton, J. R. (1982),The role of gravity wave-induced drag and diffusion in the momentum budget of the mesosphere, J. Atmos. Sci.39, 791–799.

    Google Scholar 

  • Holton, J. R. (1983),The influence of gravity wave breaking on the general circulation of the middle atmosphere, J. Atmos. Sci.40, 2497–2507.

    Google Scholar 

  • Lindzen, R. S. (1981),Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res.86, 9707–9714.

    Google Scholar 

  • Maekawa, Y., S. Fukao, I. Hirota, M. P. Sulzer, andS. Kato (1987),Some further results on long-term mesospheric and lower thermospheric wind observation by the Arecibo radar. J. Atmos. Terrest. Phys.49, 63–71.

    Google Scholar 

  • McComas, C. H., andP. Müller (1981),The dynamic balance of internal waves, J. Phys. Ocean.11, 970–986.

    Google Scholar 

  • McFarlane, N. A. (1987),The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere, J. Atmos. Sci.44, 1775–1800.

    Google Scholar 

  • Miyahara, S., Y. Hayashi, andJ. D. Mahlman (1986),Interactions between gravity waves and the planetary scale flow simulated by the GFDL “SKYHI” general circulation model, J. Atmos. Sci.43, 1844–1861.

    Google Scholar 

  • Nurmi, P. (1983),An analysis of the budgets of zonal momentum and kinetic energy in the Northern Hemisphere during the first special observing period of the FGGE, Rep. No. 24, Dept. of Meteorology, University of Helsinki.

  • Ottersten, H. (1969),Atmospheric structure and radar backscattering in clear air, Radio Sci.12, 1179–1193.

    Google Scholar 

  • Palmer, T. N., G. J. Shutts, andR. Swinbank (1986),Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization, Quart. J. Roy. Med. Soc.112, 1001–1040.

    Google Scholar 

  • Reid, I. M., andR. A. Vincent (1987),Measurements of mesospheric gravity wave momentum fluxes and mean flow accelerations at Adelaide, Australia, J. Atmos. Terrest. Phys.49, 443–460.

    Google Scholar 

  • Scheffler, A. O., andC. H. Liu (1985),On observation of gravity wave spectra in the atmosphere using MST radars, Radio Sci.20, 1309–1322.

    Google Scholar 

  • Schoeberl, M. R., D. F. Strobel, andJ. P. Apruzese (1983),A numerical model of gravity wave breaking and stress in the middle atmosphere, J. Geophys. Res.88, 5249–5259.

    Google Scholar 

  • Smith, S. A., D. C. Fritts, andT. E. VanZandt (1987),Evidence for a saturated spectrum of atmospheric gravity waves, J. Atmos. Sci.44, 1404–1410.

    Google Scholar 

  • Strobel, D. F., J. P. Apruzese, andM. R. Schoeberl (1985),Energy balance constraints on gravity wave induced eddy diffusion in the mesosphere and lower thermosphere, J. Geophys. Res.90, 13,067–13,072.

    Google Scholar 

  • Tanaka, H. (1986),A slowly varying model of the lower stratospheric zonal wind minimum induced by mesoscale mountain wave breakdown, J. Atmos. Sci.43, 1881–1892.

    Google Scholar 

  • Theon, J. S., W. Nordberg, L. B. Katchen, andJ. J. Horvath (1967),Some observations on the thermal behavior of the mesosphere, J. Atmos. Sci.24, 428–438.

    Google Scholar 

  • Thomas, R. J., C. A. Barth, andS. Solomon (1984),Seasonal variations of ozone in the upper mesosphere and gravity waves, Geophys. Res. Lett.7, 673–676.

    Google Scholar 

  • Trout, D., andH. A. Panofsky (1969), Energy dissipation near the tropopause, Tellus21, 355–358.

    Google Scholar 

  • Ulwick, J. C., K. D. Baker, M. C. Kelley, B. B. Balsley, andW. L. Ecklund (1988),Comparison of simultaneous MST radar and electron density probe measurements during STATE, J. Geophys.Res.93, 6989–7000.

    Google Scholar 

  • VanZandt, T. E. (1982),A universal spectrum of buoyancy waves in the atmosphere, Geophys. Res. Lett.9, 575–578.

    Google Scholar 

  • VanZandt, T. E. (1985),A model for gravity wave spectra observed by Doppler sounding systems, Radio Sci.20, 1323–1330.

    Google Scholar 

  • Vincent, R. A. (1984),Gravity wave motions in the thermosphere, J. Atmos. Terrest. Phys.46, 119–128.

    Google Scholar 

  • Vincent, R. A., andI. M. Reid (1983),HF Doppler measurements of mesospheric momentum fluxes, J. Atmos. Sci.40, 1321–1333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

VanZandt, T.E., Fritts, D.C. A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability. PAGEOPH 130, 399–420 (1989). https://doi.org/10.1007/BF00874466

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874466

Key Words

Navigation