Skip to main content
Log in

Fluid ascent through the solid lithosphere and its relation to earthquakes

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

The Earth is continuously expelling gases and liquids from great depths—juvenile volatiles from the mantle and recycled metamorphic products. Some of these fluids ascend through liquid rock in volcanic processes, but others utilize fractures and faults as conduits through the solid lithosphere. The latter process may have a major influence on earthquakes, since fluids at near lithostatic pressures appear to be required to activate deep faults that would otherwise remain locked.

Fluids can be driven upward through solid rock by buoyancy, but only if present in sufficient concentration to form large-scale domains occupying interconnected fracture porosity. A growing fluid domain becomes so mobilized only when it attains the critical vertical dimension required for hydrostatic instability. This dimension, depending on the ultimate compressive yield strength of the rock, may be as much as several kilometers.

Any column of fluid ascending through fractures in the solid lithosphere from a prolific deep source must become organized into a vertical sequence of discrete domains, separated by fluid-pressure discontinuities. This is required because a continuous hydrostatic-fluid-pressure profile extending from an arbitrarily deep source to the surface cannot be permitted by the finite strength of rock. A vertically stacked sequence of domains allows the internal fluid-pressure profile to approximate the external rock-stress profile in a stepwise fashion. The pressure discontinuity below the base of the uppermost hydrostatic domain may be responsible for some occurrences of so-called anomalous geopressures. An ascending stream of fluid that percolates upward from a deep source through a column of domains must encounter a sequence of abrupt pressure decreases at the transitions between successive domains. If supercritical gases act as solvents, the dissolved substances may drop out of solution at such pressure discontinuities, resulting in a local concentration of minerals and other substances.

At great depths, brittle fracture would normally be prevented by high pressure and temperature, with all excessive stress discharged by ductile flow. Rock strata invaded by an ascending fluid domain are weakened, however, because cracks generated or reactivated by the high-pressure fluid can support the overburden, greatly reducing internal friction. This reduction of strength may cause a previously stressed rock to fail, resulting in hydraulic shear fracture. Thus, earthquakes may be triggered by the buoyant migration of deep-source fluids.

The actual timing of the failure that leads to such an earthquake may be determined by the relatively rapid inflation of a fluid domain and not by any significant increase in the probably much slower rate of regional tectonic strain. Many earthquake precursory phenomena may be secondary symptoms of an increase in pore-fluid pressure, and certain coseismic phenomena may result from the venting of high-pressure fluids when faults break the surface. Instabilities in the migration of such fluid domains may also contribute to or cause the eruption of mud volcanoes, magma volcanoes, and kimberlite pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, D., andLyle, M. (1984).Age of oceanic plates at subduction and volatile recycling. Geophys. Res. Lett.11, 951–954.

    Google Scholar 

  • Adams, F. D. (1938),The Birth and Development of the Geological Sciences, pp. 399–425.

  • Aki, K., Fehler, M., andDas, S. (1977),Source Mechanism of Volcanic Tremor: Fluid-driven Crack Models and their Application to the 1963 Kilauea Eruption. J. Volcanol. Geothermal Res.2, 259–287.

    Google Scholar 

  • Anderson, O. L. (1978),The Role of Magma Vapors in Volcanic Tremors and Rapid Eruptions. Bull. Volcanol.41, 342–353.

    Google Scholar 

  • Anderson, O. L. (1979),The Role of Fracture Dynamics in Kimberlite Pipe Formation. InKimberlites, Diatremes, and Diamonds: Their Geology, Petrology, and Geochemistry, Proc. Second Intern. Kimberlite Conf., Vol. 1 (F. R. Boyd andH. O. A. Meyer, Eds.), Amer. Geophys. Union, pp. 344–353.

  • Anderson, O. L., andGrew, P. C. (1977),Stress Corrosion Theory of Crack Propagation with Applications to Geophysics. Rev. Geophys. Space Res.15, 77–104.

    Google Scholar 

  • Atkinson, B. K. (1982),Subcritical Crack Propagation in Rocks: Theory, Experimental Results and Applications. J. Struct. Geo.4, 41–56.

    Google Scholar 

  • Bandis, S. C., Lumsden, A. C., andBarton, N. R. (1983),Fundamentals of Rock Joint Deformation. Int. J. Rock Mech.20, 249–268.

    Google Scholar 

  • Barker, C. (1972),Aquathermal Pressuring—Role of Temperature in Development of Abnormal-pressure Zones. Amer. Assoc. Petrol. Geol. Bull.56, 2068–2071.

    Google Scholar 

  • Berry, F. A. F. (1973),High Fluid Potentials in California Coast Ranges and their Tectonic Significance. Amer. Assoc. Petrol. Geol. Bull.57, 1219–1249.

    Google Scholar 

  • Berry, M. J., andMair, J. A. (1979),The nature of the Earth's crust in Canada. InThe Earth's Crust: It's Nature and Physical Properties (J. G. Heacock, ed.), Amer. Geophys. Union, pp. 319–348.

  • Bilham, R. (1981),Delays in the Onset Times of Near-surface Strain and Tilt Precursors to Earthquakes. InEarthquake Prediction: An International Review (D. W. Simpson andP. G. Richards, Eds.), Amer. Geophys. Union, pp. 411–421.

  • Blot, C. (1981),Deep root of andesitic volcanoes: New evidence of magma generation at depth in the Benioff zone. J. Volcanol. Geotherm. Res.10, 339–364.

    Google Scholar 

  • Brace, W. F., andKohlstedt, D. L. (1980),Limits on Lithospheric Stress Imposed by Laboratory Experiments. J. Geophys. Res.85, 6248–6252.

    Google Scholar 

  • Brown, L., Klein, J., Sacks, I. S., andTera, F. (1982),10 Be in Island Arc Volcanoes and Implications for Subduction. Nature299, 718–720

    Google Scholar 

  • Brune, J. N., Henyey, T. L., andRoy, R. F. (1969),Heat Flow, Stresses, and Rate of Slip Along the San Andreas Fault, California. J. Geophys. Res.74, 3821–3827.

    Google Scholar 

  • Buskirk, R. E., Frohlich, C., andLatham, G. V. (1981),Unusual Animal Behavior before Earthquakes: A Review of Possible Sensory Mechanisms Rev. Geophys. Space Phys.19, 247–270.

    Google Scholar 

  • Byerlee, J. (1978),A Review of Rock Mechanics Studies in the United States Pertinent to Earthquake Prediction. PAGEOPH,116, 586–602.

    Google Scholar 

  • Carter, N. L., Anderson, D. A., Hansen, F. D., andKranz, R. L. (1981),Creep and Creep Rupture of Granitic Rocks. InMechanical Behavior of Crustal Rocks: The Handin Volume, Amer. Geophys. Union Monograph 24, pp. 61–82.

  • Das, S., andScholz, C. H. (1981),Theory of Time-dependent Rupture in the Earth. J. Geophys. Res.86, 6039–6051.

    Google Scholar 

  • Dikun, A. V., Korobeynik, V. M. andYanitskiy, I. N. (1975),Some Indications of Existence of Transcrustal Gas Flow. Geochem. Internat.12, 73–78.

    Google Scholar 

  • Engelder, T., andScholz, C. H. (1981),Fluid Flow Along Very Smooth Joints at Effective Pressures up to 200 Megapascals. InMechanical Behavior of Crustal Rocks: The Handin Volume, Amer. Geophys Union Monograph 24, pp. 147–152.

  • Etheridge, M. A., Wall, V. J., Cox, S. F., andVernon, R. H. (1984),High Fluid Pressures during Regional Metamorphism and Deformation: Implications for Mass Transport and Deformation Mechanisms. J. Geophys. Res.89, 4344–4358.

    Google Scholar 

  • Fletcher, J. B. andSykes, L. R. (1977),Earthquakes Related to Hydraulic Mining and Natural Seismic Activity in Western New York State. J. Geophys. Res.82, 3767–3780.

    Google Scholar 

  • Gold, T. (1979),Terrestrial Sources of Carbon and Earthquake Outgassing. J. Petroleum Geol.1 (3), 3–19.

    Google Scholar 

  • Gold, T., andSoter, S. (1979),Brontides: Natural Explosive Noises. Science204, 371–375.

    Google Scholar 

  • Gold, T., andSoter, S. (1980),The Deep-Earth-Gas Hypothesis. Sci. Amer.242 (6), 154–161.

    Google Scholar 

  • Gold, T., andSoter, S. (1981),Natural Explosie Noises. Science212, 1297–1298.

    Google Scholar 

  • Griggs, D. T., andBaker, D. W. (1969),The Origin of Deep-Focus Earthquakes. InProperties of Matter under Unusual Conditions (H. Mark andS. Fernbach, Eds.), Interscience, pp. 23–42.

  • Griggs, D. T., andHandin, J. (1960),Observations on Fracture and a Hypothesis of Earthquakes. Geoi. Soc. Amer. Mem.79, 347–364.

    Google Scholar 

  • Hagiwara, T. (1972),Cause of Shallow Earthquakes Occurring in the Earth's Crust as Suggested by the Accompanying Land Deformations. Phys. Earth Planet. Interiors6, 250–255.

    Google Scholar 

  • Handin, J. (1966),Strength and Ductility. InHandbook of Physical Constants (S. P. Clark, Jr., Ed.), Geol. Soc. Amer. Mem.97, pp. 223–290.

  • Healy, J. H., Rubey, W. W., Griggs, D. T., andRaleigh, C. B. (1968),The Denver Earthquakes Science161, 1301–1310.

    Google Scholar 

  • Hedberg, H. D. (1980),Methane Generation and Petroleum Migration. InProblems of Petroleum Migration (W. H. Roberts, III, andR. J. Cordell, Eds.), AAPG Studies in Geology No. 10, pp. 179–206.

  • Hill, D. P. (1977),A Model for Earthquake Swarms. J. Geophys. Res.82, 1347–1352.

    Google Scholar 

  • Hobbs, B. E., Means, W. D., andWilliams, P. F. (1976),An Outline of Structural Geology. Wiley, New York.

    Google Scholar 

  • Hubbert, M. K., andRubey, W. W. (1959),Role of Fluid Pressure in Mechanics of Overthrust Faulting. I. Mechanics of Fluid-filled Porous Solids and its Application to Overthrust Faulting. Geol. Soc. Amer. Bull.70, 115–166.

    Google Scholar 

  • Irwin, W. P., andBarnes, I. (1980),Tectonic Relations of Carbon Dioxide Discharges and Earthquakes. J. Geophys. Res.85, 3115–3121.

    Google Scholar 

  • Jones, P. H. (1980),Role of Geopressure in the Hydrocarbon and Water System. InProblems of Petroleum Migration (W. H. Roberts, III, andR. J. Cordell, Eds.), AAPG Studies in Geology No. 10, pp. 207–216.

  • Jones, V. T., andDrozd, R. J. (1983),Predictions of Oil or Gas Potential by Near Surface Geochemistry. Amer. Assoc. Petrol. Geol. Bull.67, 932–952.

    Google Scholar 

  • Kerr, R. A. (1980),Concern Rising about the Next Big Quake. Science207, 748–749.

    Google Scholar 

  • Kerrich, R., andAllison, I. (1978),Vein Geometry and Hydrostatics during Yellowknife Mineralisation. Can. J. Earth Sci15, 1653–1660.

    Google Scholar 

  • King, C.-Y. (1981),A Special Collection of Reports on Earthquake Prediction: Hydrologic and Geochemical Studies. Geophys. Res. Lett.8, 421–424.

    Google Scholar 

  • Kirby, S. H. (1980),Tectonic Stresses in the Lithosphere: Constraints Provided by the Experimental Deformation of Rocks. J. Geophys. Res.85, 6353–6363.

    Google Scholar 

  • Kozlovsky, Ye. A. (1982),Kola Super-Deep: Interim Results and Prospects. Episodes1982 (4), 9–11.

    Google Scholar 

  • Kozlovsky, Ye. A. (1984),The World's deepest well. Sci. Amer.251 (6), 98–104.

    Google Scholar 

  • Kristiansson, K., andMalmqvist, L. (1982),Evidence for Nondiffusive Transport of Evidence for Nondiffusive Transport of 222 86 Rn in the Ground and a New Physical Model for the Transport. Geophys.47, 1444–1452.

    Google Scholar 

  • Kropotkin, P. N., andValiaev, B. M. (1976),Development of a Theory of Deep-seated (Inorganic and Mixed) Origin of Hydrocarbons. InGoryuchie Iskopmaemye: Problemy Geologii i Geokhimii Naftidov i Bituminoznykh Porod (N. B. Vassoevich et al., Eds.). Akad. Nauk. SSSR, pp. 133–144. (English translation available from authors of the present paper.)

  • Lachenbruch, A., andSass, J. H. (1980),Heat Flow and Energetics of the San Andreas Fault Zone. J. Geophys. Res.85, 6185–6223.

    Google Scholar 

  • Lupton, J. E. (1983),Terrestrial Inert Gases: Isotope Tracer Studies and Clues to the Primordial Components in the Mantle. Ann. Rev. Earth Planet. Sci.11, 371–414.

    Google Scholar 

  • McGarr, A., andGay, N. C. (1978),State of Stress in the Earth's Crust. Ann. Rev. Earth Planet. Sci.6, 405–436.

    Google Scholar 

  • McGetchin, T. R., andUllrich, G. W. (1973),Xenoliths in Maars and Diatremes with Inferences for the Moon, Mars, and Venus. J. Geophys. Res.78, 1833–1853.

    Google Scholar 

  • McKeown, F. A. (1982),Investigations of the New Madrid Earthquake Region: Overview and Discussion. U.S.G.S. Prof. Paper1236, pp. 1–14.

    Google Scholar 

  • Mercier, J.-C. C., Anderson, D. A., andCarter, N. L. (1977),Stress in the Lithosphere: Inferences from Steady State Flow of Rocks. PAGEOPH.115, 199–226.

    Google Scholar 

  • Muller, O. H., andMuller, M. R. (1980),Near Surface Magma Movement. Proc. Lunar Planet. Sci. Conf. 11th, 1979–1985.

  • Norris, R. J., Henley, R. W. (1976),Dewatering of a Metamorphic Pile. Geology4, 333–336.

    Google Scholar 

  • Nur, A., andBooker, J. R. (1972),Aftershocks Caused by Pore Fluid Flow? Science175, 885–887.

    Google Scholar 

  • Orowan, E. (1960),Mechanism of Seismic Faulting. Geol. Soc. Amer. Mem.79, pp. 323–345.

    Google Scholar 

  • Phillips, W. J. (1972),Hydraulic Fracturing and Mineralization. J. Geol. Soc. London128, 337–359.

    Google Scholar 

  • Price, L. C., Wenger, L. M., Ging, T., andBlount, C. W. (1983),Solubility of Crude Oil in Methane as a Function of Pressure and Temperature. Organic Geochem.4, 201–221.

    Google Scholar 

  • Qamar, A., Kogan, J., andStickney, M. C. (1982),Tectonics and Recent Seismicity near Flathead Lake, Montana. Seismol. Soc. Amer. Bull.72, 1591–1599.

    Google Scholar 

  • Raleigh, B., andEvernden, J. (1981),Case for Low Deviatoric Stress in the Lithosphere. InMechanical Behavior of Crustal Rocks. Amer. Geophys. Union, pp. 178–186.

  • Raleigh, C. B., andPaterson, M. S. (1965),Experimental Deformation of Serpentinite and its Tectonic Implications. J. Geophys. Res.70, 3965–3985.

    Google Scholar 

  • Ramsay, J. G. (1980),The Crack-seal Mechanism of Rock Deformation. Nature284, 135–139.

    Google Scholar 

  • Rice, J. R., andRudnicki, J. W. (1979),Earthquake Precursory Effects Due to Pore Fluid Stabilization of a Weakening Fault Zone. J. Geophys. Res.84, 2177–2193.

    Google Scholar 

  • Rikitake, T. (1979),Classification of Earthquake Precursors. Tectonophys.54, 293–309.

    Google Scholar 

  • Rubey, W. W. (1951),Geologic History of Sea Water—An Attempt to State the Problem. Geol. Soc. Amer. Bull.62, 1111–1147.

    Google Scholar 

  • Savage, J. C. (1969),The Mechanics of Deep-focus Faulting. Tectonophys.8, 115–127.

    Google Scholar 

  • Secor, D. T., Jr. (1965),Role of Fluid Pressure in Jointing. Amer. J. Sci.263, 633–646.

    Google Scholar 

  • Secor, D. T., Jr., andPollard, D. D. (1975),On the Stability of Open Hydraulic Fractures in the Earth's Crust. Geophys. Res. Lett.2, 510–513.

    Google Scholar 

  • Shankland, T. J., andAnder, M. E. (1983).Electrical conductivity, temperatures, and fluids in the lower crust. J. Geophys. Res.88, 9475–9484.

    Google Scholar 

  • Sibson, R. H. (1980),Power Dissipation and Stress Levels on Faults in the Upper Crust. J. Geophys. Res.85, 6239–6247.

    Google Scholar 

  • Sibson, R. H. (1981),Fluid Flow Accompanying Faulting: Field Evidence and Models. InEarthquake Prediction: An International Review (D. W. Simpson andP. G. Richards, Eds.). Amer. Geophys. Union, pp. 593–603.

  • Sibson, R. H., Moore, J. McM., andRankin, A. H. (1975),Seismic Pumping—A Hydrothermal Fluid Transport Mechanism. J. Geol. Soc. London131, 653–659.

    Google Scholar 

  • Sokolov, V. A., Buniat-Zade, Z. A., Geodekian, A. A., andDadashev, F. G. (1969),The Origin of Gases of Mud Volcanoes and the Regularities of their Powerful Eruptions. InAdvances in Organic Geochemistry 1969 (P. A. Schenck andI. Havenaar, Eds.). Pergamon Press, Oxford, pp. 473–484.

    Google Scholar 

  • Solberg, P., Lockner, D., andByerlee, J. D. (1980),Hydraulic Fracturing in Granite under Geothermal Conditions. Int. J. Rock Mech.17, 25–33.

    Google Scholar 

  • Stephenson, D. J. (1982),Volcanism and Igneous Processes in Small Icy Satellites. Nature298, 142–144.

    Google Scholar 

  • Tamrazyan, G. P. (1971),Peculiarities in the Manifestation of Gaseous Mud Volcanoes. Nature240, 406–408.

    Google Scholar 

  • Tsang, Y. W., andWitherspoon, P. A. (1983),The Dependence of Fracture Mechanical and Fluid Flow Properties on Fracture Roughness and Sample Size. J. Geophys. Res.88, 2359–2366.

    Google Scholar 

  • Wakita, H., Nakamura, Y., Kita, I., Fujii, N., andNotsu, K. (1980),Hydrogen Release: New Indicator of Fault Activity. Science210, 188–189.

    Google Scholar 

  • Walder, J., andNur, A. (1984).Porosity reduction and crustal pore pressure development. J. Geophys. Res.89, 11539–11548.

    Google Scholar 

  • Wallace, R. E., andTa-Liang Teng (1980),Prediction of the Sungpan-Pingwu Earthquakes, August 1976. Seismol. Soc. Amer. Bull.70, 1199–1223.

    Google Scholar 

  • Walsh, J. B. (1981),Effect of Pore Pressure and Confining Pressure on Fracture Permeability. Int. J. Rock Mech.18, 429–435.

    Google Scholar 

  • Walther, J. V., andOrville, P. M. (1982),Volatile Production and Transport in Regional Metamorphism. Contrib. Mineral. Petrol.79, 252–257.

    Google Scholar 

  • Weertman, J. (1971),Theory of Water-Filled Crevasses in Glaciers Applied to Vertical Magma Transport Beneath Oceanic Ridges. J. Geophys. Res.76, 1171–1183.

    Google Scholar 

  • Wyss, M. (1975),Mean Sea Level Before and After Some Great Strike-slip Earthquakes. PAGEOPH.113, 107–118.

    Google Scholar 

  • Yanitskiy, I. N., Korobeynik, V. M., andSozinova, T. V. (1975),Expression of Crustal Faults in Helium Field. Geotectonics9, 378–384.

    Google Scholar 

  • Yardley, B. W. D. (1983),Quartz Veins and Devolatilization During Metamorphism. J. Geol. Soc. London140, 657–663.

    Google Scholar 

  • Zoback, M. D., andRoller, J. C. (1979),Magnitude of Shear Stress on the San Andreas Fault: Implications of a Stress Measurement Profile at Shallow Depth. Science206, 445–447.

    Google Scholar 

Appendix References

  • Agnew, D. C. (1978),The 1952 Fort Yuma Earthquake—Two Additional Accounts. Seismol. Soc. Amer. Bull.68, 1761–1762.

    Google Scholar 

  • Aguilera, J. G. (1920),The Sonora Earthquake of 1887. Seismol. Soc. Amer. Bull.10, 31–44.

    Google Scholar 

  • Bagnold, T. (1829),Extraordinary Effect of an Earthquake at Lima, 1828. Quart. J. Sci., Lit. Art27, 429–430.

    Google Scholar 

  • Chronicle, newspaper, San Francisco (1872), April 2.

  • Demetrescu, G., andPetrescu, G. (1941),Sur les Phénomènes Lumineux qui ont accompagné Tremblement de Terre de Roumanie de 10 November 1940. Acad. Roumaine Bull. Sect. Sci.23, 292–296.

    Google Scholar 

  • Deng Qidong, Jiang Pu, Jones, L. M., andMolnar, P. (1982),A Preliminary Analysis of Reported Changes in Ground Water and Anomalous Animal Behavior before the 4 February 1975 Haicheng Earthquake. InEarthquake Prediction: An International Review (D. W. Simpson andP. G. Richards, Eds.), pp. 543–565. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Fitz-Roy, R. (1836),Sketch of the Surveying Voyages of His Majesty's ships Adventure and Beagie, 1825–1836. J. Roy. Geogr. Soc.6, 311–343.

    Google Scholar 

  • Fuller, M. L. (1912),The New Madrid Earthquake. U.S.G.S. Bull. 494.

  • Galli, I. (1911),Raccolta e Classificazione di Fenomeni Luminosi Osservati nei Terremoti. Boll. Soc. Sismol. Italiana14, 221–447.

    Google Scholar 

  • Goodfellow, G. E. (1888),The Sonora Earthquake. Science11, 162–166.

    Google Scholar 

  • Haywood, J. (1823),The Natural and Aboriginal History of Tenessee. Nashville, Tenn.

  • Humboldt, A., von (1822),Personal Narrative of Travels to the Equinoctial Regions of the New Continent during the Years 1799–1802, vol. 2 (London, 3rd ed.), pp. 211–212.

    Google Scholar 

  • Independent, newspaper, Inyo, Calif. (1872), 20 April.

  • Ippolito, F. (1783),An Account of the Earthquake which Happened in Calabria, March 28, 1783. Phil. Trans. Roy. Soc.73, Appendix i-vii.

  • Lalemant, H. (1663),Relation of What Occurred Most Remarkable in the Missions of the Fathers of the Society of Jesus in New France in the Years 1662 and 1663. InThe Jesuit Relations and Allied Documents (R. G. Thwaites, Ed.), vol. 48, pp. 17–179.

  • Liao-ling Province Meteorological Station (1977),The Extraordinary Phenomena in Weather Observed Before the February 1975 Hai-cheng Earthquake. Acta Geophys. Sinica20, 270–275. (English translation available from authors of present paper.)

    Google Scholar 

  • Mallet, R. (1852, 1853, 1854),Third Report on the Facts of Earthquake Phenomena. Report Brit. Assoc. Adv. Sci.22, 1–176;23, 117–212;24, 1–326.

    Google Scholar 

  • Pierce, W. L. (1812),Evening Post, New York, 11 February 1812.

  • Rethly, A. (1952),A Kárpátmedencék Földrengesei 455–1918. Academic Publishing House, Budapest.

    Google Scholar 

  • Schmidt, A., andMack, K. (1913),Das Süddeutsches Erdbeben vom 16 November 1911. InWürtt, Jahrbücher f. Statist. u. Landeskde., Jahrg. 1912, Heft I, 96–139.

  • Simon, C. (1663),An Account of the Earthquake in New France, 1663. InThe Jesuit Relations and Allied Documents (R. G. Thwaites, Ed.), vol. 48, pp. 181–223.

  • Stoqueler, Mr. (1756),Observations, Made at Colares, on the Earthquake at Lisbon, of the 1st of November 1755, by Mr. Stoqueler, Consul of Hamburg. Phil. Trans. Roy. Soc.49, 413–418.

    Google Scholar 

  • Tribune, newspaper, New York (1868), 14 Sept.

  • Wallace, R. E., andTa-Liang Teng. (1980),Prediction of the Sungpan-Pingwu Earthquakes, August 1976. Amer. Seismol. Soc. Bull.70, 1199–1223.

    Google Scholar 

  • Winslow, C. F. (1865),Earthquake at Lima, March, 1865. Amer. J. Sci., 2nd Ser.40, 365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gold, T., Soter, S. Fluid ascent through the solid lithosphere and its relation to earthquakes. PAGEOPH 122, 492–530 (1984). https://doi.org/10.1007/BF00874614

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874614

Key words

Navigation