Skip to main content
Log in

The rate of quasi-steady growth and evaporation of small drops in a gaseous medium

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Summary

The intensity of steady diffusion flux onto a sphere absorbing particles with a known probability is determined at arbitrary Knudsen number. New expression for the concentration jump is given. The accuracy of the well known δ-method developed byN. A. Fuchs is estimated. The formula is derived for the rate of slow condensation growth (or evaporation) of drops of any size in a vapour-gas mixture at low vapour content. The results of different authors are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Alexandrov,O ponizhenii davlenija parov vodi nad rastvorami gigroskopicheskikh veshchestv, Trudi Instituta prikladnoi geofiziki, vip. 9 (1967), 77 (in Russian).

    Google Scholar 

  2. T. Alty andC. A. Mackay.The accomodation coefficient and the evaporation coefficient for water, Proc. Roy. Soc. London [A]149 (1935), 104.

    Google Scholar 

  3. A. Amouyal, P. Benoist andJ. Horowitz,Nouvelle methode de determination du facteur d'utilisation thermique d'une cellule, J. Nucl. Energy6, 1/2 (1957), 79.

    Google Scholar 

  4. P. Arendt andH. Kallmann,Über den Mechanismus der Aufladung von Nebelteilchen, Z. Physik35 (1926), 421.

    Google Scholar 

  5. J. R. Brock,Diffusion to particles in the near free molecule region, J. Coll. Interface Sci.22, 6 (1966), 513.

    Google Scholar 

  6. J. R. Brock,Highly nonequilibrium evaporation of moving particles in the transition region of Knudsen number, J. Coll. Interface Sci24, 3 (1967), 344.

    Google Scholar 

  7. J. C. Carstens andJ. L. Kassner,Some aspects of droplet growth theory applicable to nuclei measurements, J. Rech. Atmosph.3, 1–2 (1968), 344.

    Google Scholar 

  8. C. Cercignani andC. D. Pagani,Variational approach to rarefied flow in cylindrical and spherical geometry, inProc. 5th Intern. Symp. on Gas Dynamics (Acad. Press, New York-London 1967), 555.

    Google Scholar 

  9. B. Davison,Influence of a black sphere and of black cylinder upon the neutron density in an infinite non-capturing medium, Proc. Phys. Soc. [A]64 (1951), 881.

    Google Scholar 

  10. B. Davison,Neutron Transport Theory (Clarendon Press, Oxford 1957).

    Google Scholar 

  11. N. Frössling,Über die Verdunstung fallender Tropfen, Gerl. Beitr. Geophys.52, H. 1/2 (1938), 170.

    Google Scholar 

  12. N. A. Fuchs,O skorosti isparenija kapelek v atmosfere gaza, Zhurn. Experim. Teoret. Fiz.4, 7 (1934), 747 (in Russian).

    Google Scholar 

  13. N. A. Fuchs,Isparenije i Rost Kapel v Gazoobraznoi Srede (Acad. Sci. USSR, Moscow 1958), (in Russian).

    Google Scholar 

  14. N. A. Fuchs,Recent progress in the theory of transfer processes in aerosols at intermediate values of Knudsen number, inProc. 7th Intern. Confer. on Condens. and Ice Nuclei (Academia, Prague 1969), 10.

    Google Scholar 

  15. N. A. Fuchs andA. G. Sutugin,Visokodispersnie Aerozoli (Moscow 1969), (in Russian).

  16. G. Gyarmathy,Zur Wachstumgeschwindigkeit kleiner Flüssigkeitstropfen in einer übersättigten Atmosphäre, Z. Angew. Math. Phys.14, 3 (1963), 280.

    Google Scholar 

  17. Jer Ru Maa Evaporation coefficients of liquids, Ind. Eng. Chem. Fundam.6, 4 (1967), 504.

    Google Scholar 

  18. G. I. Marchuk,Chislennije Metodi Rascheta Jadernikh Reaktorov (Atomizdat, Moscow 1958). (in Russian).

    Google Scholar 

  19. I. P. Mazin,K teorii formirovanija spektra razmerov chastits v oblakakh i osadkakh, Trudi Tsentr. Aerolog. Observ., vip. 64 (1965), 57; Popravka, Trudi Tsentr. Aerolog. Observ., vip. 65 (1965), 106 (in Russian).

    Google Scholar 

  20. W. A. Mordy,Computation of the growth by condensation of a population of cloud droplets, Tellus11, 10 (1959), 16.

    Google Scholar 

  21. D. C. Sahni,The effect of black sphere on the flux distribution in an infinite moderator, J. Nucl. Energy, [A/B]20, 11/12 (1966), 915.

    Google Scholar 

  22. V. I. Smirnov,O velichine konstanti brounovskoi koagulatsii, Trudi Tsentr. Aerolog. Observ., vip. 55 (1964), 86 (in Russian).

    Google Scholar 

  23. V. I. Smirnov,Skorost' kondensatsionnogo rosta (ili isparenija) sfericheskoi kapli, Trudi Tsentr. Aerolog. Observ., vip. 55 (1964), 101 (in Russian).

    Google Scholar 

  24. V. I. Smirnov, Dissertatsija, Moscow (1966), (in Russian).

  25. V. I. Smirnov,Skorost' Koaguaisionnogo i Kondensatsionnogo Rosta Chastits Aerozolei, Trudi Tsentr. Aerolog. Observ, vip.92 (1969), (in Russian).

  26. P. G. Wright,On the discontinuity involved in diffusion across an interface, Faraday Discuss.30 (1960), 110.

    Google Scholar 

  27. P. G. Wright,The effect of the transport of heat on evaporation of small droplets, I. Evaporation into a large excess of a gas, Proc. Roy. Soc. Edinburgh66, 2 (1961–1962), 65.

    Google Scholar 

  28. G. Zebel,Zur Theorie der Koagulation elektrisch ungeladenen Aerosole, Kolloid.-Z.,156, H. 2 (1958), 102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, V.I. The rate of quasi-steady growth and evaporation of small drops in a gaseous medium. PAGEOPH 86, 184–194 (1971). https://doi.org/10.1007/BF00875084

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00875084

Keywords

Navigation