Skip to main content
Log in

A fracture mechanics study of subcritical tensile cracking of quartz in wet environments

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Load relaxation and cross-head displacement rate-change experiments have been used to establish log10 stress intensity factor (K) versus log10 crack velocity (v) diagrams for double torsion specimens, of synthetic quartz cracked on thea plane in liquid water and moist air.

For crack propagation normal toz and normal tor at 20°C,K Ic (the critical stress intensity factor) was found to be 0.852±0.045 MN·m−3/2 and 1.002±0.048 MN·m−3/2, respectively.

Subcritical crack growth at velocities from 10−3 m·s−1 to 10−9 m·s−1 at temperatures from 20°C to 80°C is believed to be facilitated by chemical reaction between the siloxane bonds of the quartz and the water or water vapour of the environment (stress corrosion). The slopes, of isotherms in theK-v diagrams are dependent upon crystallographic orientation. The isotherms have a slope of 12±0.6 for cracking normal tor and 19.9±1.7 for cracking normal toz. The activation enthalpy for crack propagation in the former orientation in liquid water at temperatures from 20°C to 80°C is 52.5±3.8 kJ·mole−1.

A discussion is presented of the characteristics of theK-v diagrams for quartz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, O. L. andGrew, P. C. (1977),Stress corrosion theory of crack propagation with applications to geophysics, Rev. Geophys. Space Phys.15, 77–104.

    Google Scholar 

  • Atkinson, B. K. (1979),Fracture toughness of Tennessee Sandstone and Carrara Marble using the double torsion testing method, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.16, 49–53.

    Google Scholar 

  • Atkinson, B. K. (1979),Stress corrosion and the rate-dependent tensile failure of a fine-grained quartz rock, Tectonophysics (in press).

  • Bonafede, M., Fazio, D., Mulargia, F. andBoschi, E. (1976),Stress corrosion theory of crack propagation applied to the earthquake mechanism. A possible basis to explain the occurrence of two or more large seismic shocks in a geologically short time interval, Bollettino di Geofisica, teorica ed applicata,XIX, 377–403.

    Google Scholar 

  • Brown, W. F. andStrawley, J. E.,Plane strain crack toughness testing of high strength metallic materials, ASTM STP 410 (American Society for Testing and Materials, 1966), 129 pp.

  • Charles, R. J. (1958),Dynamic fatigue of glass, J. Applied Phys.29, 1657–1662.

    Google Scholar 

  • Charles, R. J. andHillig, W. B.,Kinetics of glass failure of stress corrosion inSymposium sur la Résistance Mécanique du Verre et les Moyens de l'Améliorer (Union Scientifique Continentale du Verre, Charleroi, Belgium, 1962), pp. 511–527.

  • Demarest, H. H., Jr. (1976),Application of stress corrosion to geothermal reservoirs, Informal Report LA-6148-ms, Los Alamos Scientific Laboratory, 4 pp.

  • Evans, A. G. (1972),A method for evaluating the time-dependent failure characteristics of brittle materials- and its application to polycrystalline alumina, J. Materials Science,7, 1137–1146.

    Google Scholar 

  • Evans, A. G. andJohnson, H. (1975),The fracture stress and its dependence on slow crack growth, J. Materials Sci.10, 214–222.

    Google Scholar 

  • Evans, A. G. andLangdon, T. G. (1976),Structural ceramics, Prog. Materials Sci.21, 171–441.

    Google Scholar 

  • Evans, A. G. andLinzer, M. (1973),Failure prediction in structural ceramics using acoustic emission. J. Amer. Ceramic Soc.56, 575–581.

    Google Scholar 

  • Evans, A. G., Russell, L. R. andRicherson, D. W. (1975),Slow crack growth in ceramic materials at elevated temperatures, Metallurgical Transactions,6A, 707–716.

    Google Scholar 

  • Frischat, G. M. (1970),Sodium diffusion in natural quartz crystals, J. Amer. Ceramic Soc.53, 357.

    Google Scholar 

  • Hartley, N. E. W. andWilshaw, T. R. (1973),Deformation and fracture of synthetic α-quartz, J. Materials Sci.8, 265–278.

    Google Scholar 

  • Haul, R. andDüm gen, G. (1962),Untersuchung der Sauerstoffbeweglichkeit in titandioxyd, quarz und quarzglas mit hilfe des heterogen isotopenaustausches, Zeit. für Elektrochem.66, 636–641.

    Google Scholar 

  • Kats, A (1962),Hydrogen in alpha-quartz, Philips Research Reports,17, 133–179.

    Google Scholar 

  • Lange, F. F.,Origin and use of fracture mechanics inFracture Mechanics of Ceramics vol. 1 (eds.R. C. Bradt,D. P. H. Hasselman andF. F. Lange), (Plenum Press, New York, 1974), pp. 3–15.

    Google Scholar 

  • Lawn, B. R. (1975),An atomistic model of kinetic crack growth in brittle solids, J. Materials Sci.10, 469–480.

    Google Scholar 

  • Lawn, B. R. and Wilshaw, T. R.,Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1975), 204 pp.

    Google Scholar 

  • Martin, R. J. III (1972),Time-dependent crack growth in quartz and its application to the creep of rocks, J. Geophys. Res.77, 1406–1419.

    Google Scholar 

  • Martin, R. J. III andDurham, W. B. (1975),Mechanisms of crack growth in quartz, J. Geophys. Res.80, 4837–4844.

    Google Scholar 

  • Mould, R. E. andSouthwick, R. D. (1959),Strength and static fatigue of abraded glass under controlled ambiert conditions, 2, effects of various abrasions and the universal fatigue curve, J. Amer. Ceramic Soc.42, 582–592.

    Google Scholar 

  • Paris, P. C. andSih, G. C.,Stress analysis of cracks inFracture Toughness Testing and its Applications, ASTM STP 381 (American Society for Testing and Materials, 1965), pp. 30–83.

    Google Scholar 

  • Rutter, E. H. andMainprice, D. H. (1978),The effect of water on stress relaxation of faulted and unfaulted sandstone, Pure and Appl. Geophys.116, 634–654.

    Google Scholar 

  • Scholz, C. H. (1968),Mechanism of creep in brittle rock, J. Geophys. Res.73, 3295–3302.

    Google Scholar 

  • Scholz, C. H. (1972),Static fatigue of quartz, J. Geophys. Res.77, 2104–2114.

    Google Scholar 

  • Stuart, D. A. andAnderson, O. L. (1953),Dependence of ultimate strength of glass under constant load on temperature, ambient atmosphere and time, J. Amer. Ceramic Soc.36, 416–424.

    Google Scholar 

  • Swain, M. V., Williams, J. S., Lawn, B. R., andBeek, J. J. H. (1973),A comparative study of the fracture of various silica modifications using the hertzian test. J. Materials Sci.8, 1153–1164.

    Google Scholar 

  • White, S. H. (1971),Electrical conductivity in quartz, a reply, Nature Phys. Sci.233, 63–64.

    Google Scholar 

  • Wiederhorn S. M.,Subcritical crack growth in ceramics, inFracture Mechanics of Ceramics vol. 2 (eds.R. C. Bradt,D. P. H. Hasselman andF. F. Lange), (Plenum Press, New York, 1974), pp. 613–646.

    Google Scholar 

  • Wiederhorn, S. M.,Mechanisms of subcritical crack growth in glass inFracture Mechanics of Ceramics vol. 4 (eds.R. C. Bradt,D. P. H. Hasselman andF. F. Lange), (Plenum Press, New York, 1978), pp. 549–580.

    Google Scholar 

  • Wiederhorn, S. M. andBolz, L. H. (1970),Stress corrosion and static fatigue of glass, J. American Ceramic Soc.53, 543–548.

    Google Scholar 

  • Williams, D. P. andEvans, A. G. (1973),A simple method for studying slow crack growth, J. Testing and Evaluation,1, 264–270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkinson, B.K. A fracture mechanics study of subcritical tensile cracking of quartz in wet environments. PAGEOPH 117, 1011–1024 (1979). https://doi.org/10.1007/BF00876082

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00876082

Key words

Navigation