Skip to main content
Log in

Annual heat balance and equilibrium temperature of Lake Aegeri, Switzerland

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The mean heat budget of Lake Aegeri, Switzerland, is 950 MJ·m−2, comparable to that of neighbouring lakes. The annual variation in the net heat flux can be adequately described using a six-term heat balance equation based on 12 years of monthly mean meteorological and surface temperature data. Although the magnitude of the net heat flux is dominated by the radiative terms of the equation, the one-month backward shift of the net flux and total heat content extrema from the solstices and equinoxes respectively is due to the phase shift of the non-radiative with respect to the radiative terms. A linear approximation was used to express the net heat flux in terms of a heat exchange coefficient and an equilibrium temperature. The former varies from 17 to 28 W·m−2·K−1 in the course of a year; fluctuations in the latter are found to depend mainly on fluctuations in cloud cover and relative humidity, whilst the effect of fluctuations in air temperature and wind speed is slight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aase, J. K. and S. B. Idso, 1978. A comparison of two formula types for calculating long wave radiation from the atmosphere. Water Resour. Res. 14: 623–625.

    Google Scholar 

  • Anderson, E. R., 1954. Energy budget studies. In: Waterloss investigations: Lake Hefner Studies, U. S. Geol. Surv. Prof. Paper vol. 269, pp. 71–118.

    Google Scholar 

  • Baumgartner, A., E. Reichel and G. Weber, 1983. Der Wasserhaushalt der Alpen (Kartenteil). Munich: R. Oldenbourg Verlag, 343 pp.

    Google Scholar 

  • Bolz, H. M., 1949. Die Abhängigkeit der infraroten Gegenstrahlung von der Bewölkung. Z. Meteorol. 3: 201–203.

    Google Scholar 

  • Bowen, I. S., 1926. The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 27: 779–787.

    Google Scholar 

  • Brunt, D., 1932. Notes on radiation in the atmosphere: I. Quart. J. Roy. Meteorol. Soc. 58: 389–420.

    Google Scholar 

  • Brutsaert, W. H., 1975. On a derivable formula for long-wave radiation from clear skies. Water Resour. Res. 11: 742–744.

    Google Scholar 

  • Brutsaert, W. H., 1982. Evaporation into the atmosphere. Dordrecht: D. Reidel, 299 pp.

    Google Scholar 

  • Dingman, S. L., 1972. Equilibrium temperatures of water surfaces as related to air temperature and solar radiation. Water Resour. Res. 8: 42–49.

    Google Scholar 

  • Dingman, S. L., W. F. Weeks and Y. C. Yen, 1968. The effects of thermal pollution on river ice conditions. Water Resour. Res. 4: 349–362.

    Google Scholar 

  • Edinger, J. E., D. W. Duttweiler and J. C. Geyer, 1968. The response of water temperatures to meteorological conditions. Water Resour. Res. 4: 1137–1143.

    Google Scholar 

  • Heuscher, J., 1906. Beiträge zu einer Monographie des Aegerisees. Schweiz. Fisch. Z. 14 (Suppl.): 1–59.

    Google Scholar 

  • Idso, S. B. and R. D. Jackson, 1969. Thermal radiation from the atmosphere. J. Geophys. Res. 74: 5397–5403.

    Google Scholar 

  • IMSL, 1982. IMSL library reference manual, 9th edition, Houson: IMSL.

    Google Scholar 

  • Justus, C. G., W. R. Hargraves and A. Yalcin, 1976. Nationwide assessment of potential output from wind-powered generators. J. Appl. Meteor. 15: 673–678.

    Google Scholar 

  • Kasten, F. and G. Czeplak, 1980. Solar and terrestrial radiation dependent on the amount and type of cloud. Solar energy 24: 177–189.

    Google Scholar 

  • Kasten, F., K. Dehne, H. D. Behr and U. Berghalter, 1984. Die räumliche und zeitliche Verteilung der diffusiven und direkten Sonnenstrahlung in der Bundesrepublik Deutschland. West German Fed. Ministr. for Res. and Technol., Res. Rept. BMFT-FB-T 84–125. German Weather Service, Meteorol. Observ. Hamburg, June 1984, 128 pp.

    Google Scholar 

  • Krambeck, H. J., 1982. Solar energy and quanta in Baltic lakes. Arch. Hydrobiol. 95: 197–206.

    Google Scholar 

  • Kuhn, W., 1972. Physikalisch-meteorologische Überlegungen zur Nutzung von Gewässern zu Kühlzwekken. Arch. Met. Geoph. Biokl., Ser. A, 21: 95–122.

    Google Scholar 

  • Kuhn, W., 1977. Berechnung der Temperatur und Verdunstung alpiner Seen auf klimatologisch-ther-modynamischer Grundlage. Rept. No. 70, Swiss Meteorol. Office, 46 pp.

  • Kuhn, W., 1978. Aus Wärmehaushalt und Klimadaten berechnete Verdunstung des Zürichsees. Vjschr. naturf. Ges. Zürich, 123: 261–283.

    Google Scholar 

  • Kutschke, I., 1966. Die thermischen Verhältnisse im Zürichsee zwischen 1937 und 1963 und ihre Beeinflussung durch meteorologische Faktoren. Vjschr. naturf. Ges. Zürich 111: 47–124.

    Google Scholar 

  • LAWA (Länderarbeitsgemeinschaft Wasser), 1977. Grundlagen für die Beurteilung der Wärmebelastungen von Gewässern, Part 1, Binnengewässer, 2nd edition, Mainz: LAWA-Arbeitsgruppe Wärmebelastung der Gewässer, 123 pp.

    Google Scholar 

  • Liljequist, G. H. and K. Cehak, 1979. Allgemeine Meteorologie, 2nd edition, Braunschweig: F. Vieweg, 385 pp.

    Google Scholar 

  • Marti, D. E. and D. M. Imboden, 1986. Thermische Energieflüsse an der Wasseroberfläche: Beispiel Sempachersee. Schweiz. Z. Hydrol. 48 (2), 196–229.

    Google Scholar 

  • Maurer, J., 1913. Über die Größe der jährlichen Verdunstung auf Schweizer-Seen am nordalpinen Fuß. Meteorol. Z. 30: 209–213.

    Google Scholar 

  • McCombie, A. M., 1959. Some relations between air temperatures and the surface water temperature of lakes. Limnol. Oceanogr. 4: 252–258.

    Google Scholar 

  • McMillan, W., 1971. Heat dispersal — Lake Trawsfynydd cooling studies. In: Symposium on freshwater biology and electrical power generation, part I, session 1, pp 41–80.

  • Mermier, M. and B. Seguin, 1976. Comments on “On a derivable formula for long-wave radiation from clear skies” by W. Brutsaert. Water Resour. Res. 12: 1327–1328.

    Google Scholar 

  • Moser, R., 1975. Hydrologische Studie des Kantons Zug. Rept. 457-3, Tiefbauamt, Canton Zug, 11 pp.

    Google Scholar 

  • Neumann, G. and W. J. Pierson, 1966. Principles of physical oceanography. Englewood Cliffs: Prentice Hall, 545 p.

    Google Scholar 

  • Satterlund, D. R., 1979. An improved equation for estimating long-wave radiation from the atmosphere. Water Resour. Res. 15: 1649–1650.

    Google Scholar 

  • SMA (Schweizerische Meteorologische Anstalt), 1981. Annalen der Schweizerischen Meteorologischen Anstalt, vol. 118.

  • Sweers, H. E., 1976. A nomogram to estimate the heat-exchange coefficient at the air-water interface as a function of wind speed and temperature; a critical survey of some literature. J. Hydrol. 30: 375–401.

    Google Scholar 

  • Swinbank, W. C., 1963. Long-wave radiation from clear skies. Quart. J. Roy. Meteorol. Soc. 89: 339–348.

    Google Scholar 

  • Swiss Federal Office for the Protection of the Environment, National Hydrological Service, 1981. Hydrologisches Jahrbuch der Schweiz. Bern, 373 pp.

  • Urfer, C., 1979. Die Klimaregionen der Schweiz: Alpennordhang. In: Klimatologie der Schweiz, vol. II, Regionale Klimabeschreibungen, Part 2, 247–322. Suppl. Annal. Schweiz. Meteor. Anstalt, Jgh 1978.

  • Webb, M. S., 1974. Surface temperatures of Lake Erie. Water Resour. Res. 10: 199–210.

    Google Scholar 

  • Weibull, W., 1951. A statistical distribution function of wide applicability. J. Appl. Mech. 18: 293–297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livingstone, D.M., Imboden, D.M. Annual heat balance and equilibrium temperature of Lake Aegeri, Switzerland. Aquatic Science 51, 351–369 (1989). https://doi.org/10.1007/BF00877177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877177

Key words

Navigation