Skip to main content
Log in

Seasonal dynamics of a cyanobacteria-dominated microbial community in surface sediments of a shallow, eutrophic lake

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The seasonal variation of microbial biomass and activity in the surface sediments (0–10 cm) of the shallow, eutrophic Lake Vallentunasjön was followed during one year. “Overwintering”Microcystis colonies dominated the microbial community during all seasons, constituting 60–90% of the total microbial biomass. Expressed on an areal basis, the benthic biomass was, throughout the year, larger than or similar to the planktonic biomass during the peak of the summer bloom, indicating an ability of the colonies to survive in the sediments for extended periods. Abundance of “other”, non-photosynthetic bacteria varied in the range 3.0–15.5 · 1010 cells g−1 d. w. over the year with minimum values in summer and maximum values in autumn in connection with the sedimentation of theMicrocystis bloom. A substantial part of the non-photosynthetic bacteria, up to circa 40%, was associated with the mucilage of healthyMicrocystis colonies. Bacterial production (3H-thymidine incorporation) appeared to be strongly temperature dependent and less influenced by the seasonal sedimentation pattern. Our data indicate an increasing proportion of non-growing cells in autumn and winter. Biomass-bound phosphorus constituted a significant portion, circa 10%, of the phosphorus content in Lake Vallentunasjön sediments. This pool has normally been overlooked in studies on phosphorus dynamics in lake sediments. Different mechanisms whereby organic phosphorus can be released from the sediments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, G., 1985, Growth ofMicrocystis wesenbergii in batch and chemostat cultures. Verh. Internat. Verein. Limnol. 22: 2813–2820.

    Google Scholar 

  • Ahlgren, I., 1988, Nutrient dynamics and trophic state response of two eutrophicated lakes after reduced nutrient loading, p. 63–97. In: G. Balvay (ed.): Eutrophication and lake restoration. Water quality and biological impacts. I. S. B. N. 88.07.143.

  • Bell, R. T. and I. Ahlgren, 1987, Thymidine incorporation and microbial respiration in the surface sediment of a hypereutrophic lake. Limnol. Oceanogr. 32: 476–482.

    Google Scholar 

  • Bern, L., 1987, Autoradiographic studies of [methyl-3H]thymidine incorporation in a cyanobacterium(Microcystis wesenbergii)-bacterium association and in selected algae and bacteria. Appl. Environ. Microbiol. 49: 232–233.

    Google Scholar 

  • Billen, G., P. Servais and A. Fontigny, 1988, Growth and mortality in bacterial population dynamics of aquatic environments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 31: 173–183.

    Google Scholar 

  • Boström, B., 1988, Relations between chemistry, microbial biomass and activity in sediments of a sewage-polluted vs. a nonpolluted eutrophic lake. Verh. Intern. Verein. Limnol. 23: 451–459.

    Google Scholar 

  • Boström, B., I. Ahlgren and R. Bell, 1985, Internal nutrient loading in a shallow eutrophic lake, reflected in seasonal variations of some sediment parameters. Verh. Internat. Verein. Limnol. 22: 3335–3339.

    Google Scholar 

  • Boström, B., J. M. Andersen, S. Fleischer and M. Jansson, 1988, Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229–244.

    Google Scholar 

  • Boström, B. and K. Pettersson, 1982, Different patterns of phosphorus release from lake sediment in laboratory experiments. Hydrobiologia 92: 415–429.

    Google Scholar 

  • Bratbak, G. and I. Dundas, 1984, Bacterial dry matter content and biomass estimations. Appl. Environ. Microbiol. 48: 755–757.

    Google Scholar 

  • Broberg, A., 1980, Effects of heavy metals on microbial activity in freshwater. Inst. Limnol. Uppsala Tech. Rep. LIU 1980: B 1 (in Swedish).

  • Broberg, A., 1985, A modified method for studies of electron transport system activity in freshwater sediments. Hydrobiologia 120: 181–187.

    Google Scholar 

  • Cáceres, O. and C. S. Reynolds, 1984, Some effects of artificially-enhanced anoxia on the growth ofMicrocystis aeruginosa Kütz. emend. Elenkin, with special reference to the initiation of its annual growth cycle in lakes. Arch. Hydrobiol. 99: 379–397.

    Google Scholar 

  • Chernusova, V. M., L. A. Sirenko and V. V. Arendarchuk, 1968, Localization and physiological state of mass species of blue-green algae during late autumn and spring periods. In. A. V. Topachevsky: “Tsvetenie” vody. Naukova Dumka, Kiev. USSR (in Russian).

  • Cmiech, H. A., 1981, Ultrastructural changes in freshwater populations of planktonicCyanophyceae (Cyanobacteria) during cell differentiation and seasonal development. Ph. D. Thesis. Univ. of Leeds.

  • Einsele, W., 1936, Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Arch. Hydrobiol. 29: 664–686.

    Google Scholar 

  • Einsele, W., 1938, Über chemische und kolloidchemische Vorgänge in Eisen-Phosphat-Systemen unter limnochemischen und limnogeochemischen Gesichtspunkten. Arch. Hydrobiol. 33: 361–387.

    Google Scholar 

  • Fallon, R. D. and T. D. Brock, 1981 Overwintering ofMicrocystis in Lake Mendota. Freshw. Biol. 11: 217–226.

    Google Scholar 

  • Fleischer, S., 1986, Aerobic uptake of Fe(III)-precipitated phosphorus by microorganisms. Arch. Hydrobiol. 197: 267–277.

    Google Scholar 

  • Gächter, R. J. S. Meyer and A. Mares, 1988, Contribution of bacteria to release and fixation of phosphorus in lake sediments Limnol. Oceanogr. 33:1542–1558.

    Google Scholar 

  • Graf, G., 1986, Winter inversion of biomass and activity profile in a marine sediment. Mar. Ecol. Prog. Ser. 33: 231–235.

    Google Scholar 

  • Hieltjes, A. H. M. and L. Lijklema, 1980, Fractionation of inorganic phosphates in calcareous sediments. J. Environ. Qual. 9: 405–407.

    Google Scholar 

  • Imamura, N., 1981, Studies on the water blooms in Lake Kasumigaura. Verh. Internat. Verein. Limnol. 21: 652–658.

    Google Scholar 

  • Jacobson, L. and M. Halmann, 1982, Polyphosphate metabolism in the blue-green algaMicrocystis aeruginosa. J. Plankton. Res. 4: 481–488.

    Google Scholar 

  • Jansson, M., 1987, Anaerobic dissolution of iron-phosphorus complexes in sediment due to the activity of nitrate-reducing bacteria. Microb. Ecol. 14: 81–89.

    Google Scholar 

  • Johnson, R., B. Boström and W. van de Bund: Interactions betweenChironomus plumosus (L.) and the microbial community in surface sediments of a shallow, eutrophic lake. Limnol. Oceanogr. (in press).

  • Jones, J. G., J. L. G. Orlandi and B. M. Simon, 1979, A microbiological study of sediments from the Cumbrian lakes. J. Gen. Microbiol. 115: 37–48.

    Google Scholar 

  • Kalff, J. and R. Knoechel, 1978, Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Ann. Rev. Ecol. Syst. 9: 475–495.

    Google Scholar 

  • Kappers, F. I., 1984, On population dynamics of the cyanobacteriumMicrocystis aeruginosa. Ph. D. Thesis. Univ. of Amsterdam.

  • Kjelleberg, S. and M. Hermansson, 1987, Short term responses to energy fluctuation by marine heterotrophic bacteria, p. 203–219. In Sleigh M. A. (ed.): Microbes in the sea. Ellis Horwood Ltd.

  • Meyer-Reil, L.-A., 1983, Benthic response to sedimentation events during autumn to spring at a shallow water station in the Western Kiel Bight. II. Analysis of benthic bacterial populations. Mar. Biol. 77: 247–256.

    Google Scholar 

  • Moriarty, D. J. W., 1986, Measurement of bacterial growth rates in aquatic systems using rates of nucleic acid synthesis. Adv. Microbiol. Ecol. 9: 245–292.

    Google Scholar 

  • Mortimer, C. H., 1941, The exchange of dissolved substances between mud and water in lakes. I. J. Ecol. 29: 280–329.

    Google Scholar 

  • Mortimer, C. H., 1942, The exchange of dissolved substances between mud and water in lakes. II. J. Ecol. 30: 147–201.

    Google Scholar 

  • Novikov, B. I. and V. V. Arendarchuk, 1984, Hydrological conditions of the wintering ofMicrocystis aeruginosa in Kremechugskoye Reservoir. Hydrobiol. J. 20: 17–21.

    Google Scholar 

  • Packard, T. T., 1971, The measurement of respiratory electron transport activity in marine plankton. J. Mar. Res. 29: 234–244.

    Google Scholar 

  • Paerl, H. W., 1983, Interactions with bacteria, p. 441–461. In: N. G. Carr, and B. A. Whitton (eds.): The biology of cyanobacteria. California.

  • Preston, T., W. D. P. Stewart and C. S. Reynolds, 1980, Bloom-forming cyanobacteriumMicrocystis aeruginosa overwinters on sediment surface, Nature 288: 365–367.

    Google Scholar 

  • Psenner, R., B. Boström, M. Dinka, K. Pettersson, R. Pucsko and M. Sager, 1988, 4. Fractionation of phosphorus in suspended matter and sediment. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 98–110.

    Google Scholar 

  • Reynolds, C. S., 1984, The ecology of freshwater phytoplankton. Cambridge.

  • Reynolds, C. S., G. H. M. Jaworsky H. A. Cmiech and G. F. Leedale, 1981, On the annual cycle of the blue-green algaMicrocystis aeruginosa Kütz. emend. Elenkin. Phil. R. Soc. Lond. B 293: 419–477.

    Google Scholar 

  • Reynolds, C. S. and D. A. Rogers, 1976, Seasonal variations in the vertical distribution and buoyancy ofMicrocystis aeruginosa Kütz. emend. Elenkin in Rostherne Mere, England. Hydrobiologia48 17–23.

    Google Scholar 

  • Servais, P., G. Billen and J. Vives Rego, 1985, Rate of bacterial mortality in aquatic environments. Appl. Environ. Microbiol. 49: 1448–1454.

    Google Scholar 

  • Sirenko, L. A., V. M. Chernusova, V. V. Arendarchuk and V. N. Kozitskaya, 1969, Factors of mass development of blue-green algae. Hydrobiol. J. 5: 1–8.

    Google Scholar 

  • Sommer, U., 1981, The role of r- and K-selection in the succession of phytoplankton in Lake Constance. Acta Oecologica 2: 327–342.

    Google Scholar 

  • Sørensen, J., 1982, Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl. Environm. Microbiol. 43: 319–324.

    Google Scholar 

  • Takamura, N. M., M. Yasuno and K. Sugahara, 1984, Overwintering ofMicrocystis aeruginosa Kütz. in a shallow lake. J. Plankton Res. 6: 1019–1029.

    Google Scholar 

  • Topachevskiy, A. V., L. P. Braginskiy and L. A. Sirenko, 1969, Massive development of blue-green algae as a product of the ecosystem of a reservoir. Hydrobiol. J. 5: 1–10.

    Google Scholar 

  • Trimbee, A. M. and G. P. Harris, 1984, Phytoplankton population dynamics of a small reservoir: use of sedimentation traps to quantify the loss of diatoms and recruitment of summer bloom-forming bluegreen algae. J. Plankton Res. 6: 897–918.

    Google Scholar 

  • Vosjan, J. H., 1982, Respiratory electron transport system activities in marine environments. Hydrobiol. Bull. 16: 61–68.

    Google Scholar 

  • Wentzel, M. C., L. H. Lötter, R. E. Loewenthal and G. v. R. Marais, 1986, Metabolic behaviour ofAcinetobacter spp. in enhanced biological phosphorus removal — a biochemical model. Water S. A. 12: 209–223.

    Google Scholar 

  • Witzel, K. P., 1988, Uptake of nucleic acid precursors by aquatic microbial communities and pure cultures of bacteria and algae. Verh. Internat. Verein. Limnol. 23: 1865–1868.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boström, B., Pettersson, AK. & Ahlgren, I. Seasonal dynamics of a cyanobacteria-dominated microbial community in surface sediments of a shallow, eutrophic lake. Aquatic Science 51, 153–178 (1989). https://doi.org/10.1007/BF00879300

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00879300

Key words

Navigation