Skip to main content
Log in

Finite element method in mechanics of deformable bodies

  • Published:
Soviet Applied Mechanics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. N. P. Abovskii, “Direct derivation of equations of the net-point method,” in: Space Structures in Krasnoyarsk Krai [in Russian], Izd. PromstroiNIIproekt, Krasnoyarsk (1965).

    Google Scholar 

  2. M. R. Irons, “Engineering applications of numerical integration in stiffness methods,” Raketnaya Tekhnika i Kosmonavtika, No. 11 (1966).

  3. M. R. Irons, “Comments on the article ‘Stiffness matrices in the form of a sector’” Raketnaya Tekhnika i Kosmonavtika, No. 3 (1970).

  4. M. R. Irons and J. Barlow, “Comments on the article ‘Matrices for the direct stiffness method,’” Raketnaya Tekhnika i Kosmonavtika, No. 2 (1964).

  5. M. R. Irons and K. J. Draper, “Inconsistency of nodal ties in calculating the bending of plants by the stiffness method,” Raketnaya Tekhnika i Kosmonavtika, No. 5 (1965).

  6. F. A. Akyuz and S. Utky, “Automatic renumeration of nodes for minimizing the width of the band in stiffness matrices,” Raketnaya Tekhnika i Kosmonavtika, No. 4 (1968).

  7. A. V. Aleksandrov, “Slope-deflection method for calculating slab-beam structures,” Trudy Mosk. Inst. Inzh. Transporta, No. 174 (1963).

  8. A. V. Aleksandrov, “Discrete model for calculating orthotropic plates and shells,” Trudy Mosk. Inst. Inzh. Transporta, No. 364 (1971).

  9. A. V. Aleksandrov and N. N. Shaposhnikov, “Use of a discrete model in calculating plates with the use of automatic digital computers,” Trudy Mosk. Inst. Inzh. Transporta, No. 194 (1966).

  10. J. Argyris, “Energy theorems and calculation of structures,” in: Modern Methods of Calculation of Complex Statically Indeterminate Systems [in Russian], Sudpromgiz, Leningrad (1961).

    Google Scholar 

  11. J. Argyris, “Matrix analysis of small and large displacements in three-dimensional elastic media,” Raketnaya Tekhnika i Kosmonavtika, No. 1 (1965).

  12. J. Argyris, Current Achievements in Methods of Calculating Structures with the Use of Matrices [Russian translation], IL, Moscow (1968).

    Google Scholar 

  13. H. Ir. Armen, G. Isakson, and A. Pifko, “Methods of discrete elements for plastic calculation of structures subjected to cyclic loading,” in: Collection of Translations “Mekhanika,” No. 1 (1971).

  14. G. Best. “Formulas for certain types of stiffness elements of structural members,” Raketnaya Tekhnika i Kosmonavtika, No. 1 (1963).

  15. G. Best, “General formula for the stiffness matrix of structural members,” Raketnaya Tekhnika i Kosmonavtika, No. 8 (1963).

  16. F. K. Bogner, R. L. Fox, and L. A. Schmit, “Calculation of a cylindrical shell by the discrete element method,” Raketnaya Tekhnika i Kosmonavtika, No. 4 (1967).

  17. A. N. Bondarenko, “Construction of the stiffness matrix of the finite element of an oblique shell,” Trudy Khabarosk. Inst. Inzh. Zhel.-Dor. Transporta, No. 41 (1970).

  18. A. N. Bondarenko, “Construction of the stiffness matrix of an oblique nonsloping finite element of a shell.” Trudy Mosk. Inst. Inzh. Transporta, No. 391 (1971).

  19. Z. I. Burman and M. T. Timofeev, “Problems of the methods of computer implementation of problems of a solid deformable body by the finite element method written in matrix form and the creation of adequate automatic programming systems for it,” in: Numerical Methods in Technical and Economic Problems [in Russian], Izd. Kazansk. Univ. (1971).

  20. D. V. Vainberg, V. M. Gerashchenko, I. Z. Roitfarb, and A. L. Sinyavskii, “Derivation of net equations of bending of plates by the variational method,” in: Strength of Materials and Structural Mechanics [in Russian], No. 1, Izd. Budiverl'nik, Kiev (1965).

    Google Scholar 

  21. D. V. Vainberg, V. V. Kirichevskii, and A. S. Sakharov, “Equations of the finite element method in base curvilinear coordinates,” in: Strength of Materials and Structural Mechanics [in Russian], No. 16, Izd. Budivel'nik, Kiev (1972).

    Google Scholar 

  22. D. V. Vainberg, A. S. Sakharov, and A. I. Gulyar, “Equations of shells of complex structure,” in: Strength of Materials and Structural Mechanics [in Russian], No. 14, Izd. Budivel'nik, Kiev (1971).

    Google Scholar 

  23. D. V. Vainberg, A. S. Sakharov, and V. V. Kirichevskii, “Derivation of the stiffness matrix of a discrete element of arbitrary form,” in: Strength of Materials and Structural Mechanics [in Russian], No. 14, Izd. Budivel'nik, Kiev (1971).

    Google Scholar 

  24. D. V. Vainberg, A. S. Sakharov, and V. V. Kirichevskii, “Investigation of complex space structures by the discrete element method in the case of large displacements,” in: Strength of Materials and Structural Mechanics [in Russian], No. 15, Izd. Budivel'nik, Kiev (1971).

    Google Scholar 

  25. D. V. Vainberg, A. S. Sakharov, and A. L. Sinyavskii, “Numerical solution of linear and geometrically nonlinear problems for ribbed shells and plates,” in: Calculation of Space Structures [in Russian], No. 13, Gosstroiizdat, Moscow (1969).

    Google Scholar 

  26. P. M. Varvak and V. M. Moyanskii, “Bending of a fixed square slotted plate,” Trudy Kuibyshevskogo Inzh.-Stroit. Inst. (1971).

  27. P. M. Varvak and V. M. Moyanskii, “Bending of a square slotted plate,” Trudy Tyumensk. Industr. Inst. (1971).

  28. Yu. K. Vilipyl'd, “Derivation of equations of the finite element method by a variant of the discrete variational method,” Trudy Tallinsk. Politekhn. Inst., Seriya A, No. 278 (1968).

  29. I. K. Vilipyl'd, “Calculation of ribbed plates by the finite element method,” Trudy Tallinsk. Politekhn. Inst., Seriya A, No. 297 (1970).

  30. W. Visser, “Improved variant of a discrete element of a mixed type of plate in bending,” Raketnaya Tekhnika in Kosmonavtika, No. 9 (1969).

  31. V. Z. Vlasov, Structural Mechanics of Thin-Walled Space Systems [in Russian], Gosstroiizdat, Moscow (1949).

    Google Scholar 

  32. V. Z. Vlasov, Selected Works [in Russian], Vol. 1–3, Izd. AN SSSR Moscow (1963).

    Google Scholar 

  33. P. P. Voroshko and O. S. Sakharov, “Investigation of various equations of elasticity theory and their calculation on a computer,” in: Strength of Materials and Structural Mechanics [in Ukrainian], No. 4, Izd. Buidivel'nik, Kiev (1966).

    Google Scholar 

  34. R. H. Gallagher, “Methods of obtaining stiffness matrices of elements,” Raketnaya Tekhnika i Kosmonavtika, No. 6 (1963).

  35. R. H. Gallagher and J. Padlog, “Investigation of the stability of structures on the basis of an analysis of discrete elements,” Raketnaya Tekhnika in Kosmonavtika, No. 6 (1963).

  36. V. M. Gerashchenko, V. N. Kislookii, A. S. Sakharov, and A. L. Sinyavskii, “Calculation of plants of the steam turbine blade shroud type,” in: Strength of Materials and Structural Mechanics [in Russian], No. 8, Izd. Budivel'nik, Kiev (1968).

    Google Scholar 

  37. V. M. Gerashchenko and S. N. Lyubchenko, “Formulation of various equations of the plane problem of elasticity by means of the variational method,” in: Strength of Materials and Structural Mechanics [in Ukrainian], No. 1, Izd. Budivel'nik, Kiev (1965).

    Google Scholar 

  38. L. R. Hermann and D. M. Campbell, “Discrete element method for thin shells,” Raketnaya Tekhnika i Kosmonavtika, No. 10 (1968).

  39. I. I. Gol'denblat, Nonlinear Problems of Elasticity Theory [in Russian], Izd. Nauka, Moscow (1969).

    Google Scholar 

  40. A. S. Gorodetskii, “Calculation of thin-walled reinforced-concrete structure in the nonelastic stage,” Trudy NIISK, No. 6, Izd. Budivel'nik, Kiev (1965).

    Google Scholar 

  41. A. S. Gorodetskii, “Calculation of three-dimensional thin-walled structures by the finite element method,” Trudy KievZNIIÉP, No. 2 (1971).

  42. A. S. Gorodetskii, “Calculation of combined systems by the finite element method,” in: Strength of Materials and Structural Mechanics [in Russian], No. 16 Izd. Budivel'nik, Kiev (1972).

    Google Scholar 

  43. A. S. Gorodetskii and G. B. Gil'man, “Bar design models of thin-walled reinforced-concrete structures,” Stroitel'stvo i Arkhitektura, No. 10 (1964).

  44. P. E. Grafton and D. R. Strome, “Calculation of axisymmetric shells by the method of direct determination of stiffnesses,” Raketnaya Tekhnika i Kosmonavtika, No. 10 (1963).

  45. B. E. Greene, R. E. Jones, and D. R. Strome, “Generalized variational principles in the finite element method,” Raketnaya Tekhnika i Kosmonavtika, No. 7 (1969).

  46. A. I. Gulyar, “Calculation of physically nonlinear axisymmetric shells with an arbitrary meridian in the case of large displacements,” in: Strength of Materials and Structural Mechanics [in Russian], No. 16, Izd. Budivel'nik, Kiev (1972).

    Google Scholar 

  47. R. E. Jones, “Generalization of the direct stiffness method of analysis of structures,” Raketnaya Tekhnika i Kosmonavtika, No. 5 (1964).

  48. R. E. Jones and D. R. Strome, “Calculation of shells of revolution by the direct stiffness method by means of curvilinear elements,” Raketnaya Tekhnika i Kosmonavtika, No. 9 (1966).

  49. M. W. Jonson and R. W. MacLay, “Convergence of the finite element method in elasticity theory,” tProceedings ASME, “Prikl. Mekhan.,90, No. 2 (1968).

  50. M. I. Dlugach, “Development of a model of the net-point method,” Prikl. Mekhan.,2, No. 3 (1956).

  51. M. I. Dlugach, Net-Point Method in the Mixed Plane Problem of Elasticity Theory [in Russian], Izd. Naukova Dumka, Kiev (1964).

    Google Scholar 

  52. L. G. Dmitriev, “Possible bar design models of some discrete systems,” in: Transactions of the All-Union Conference on the Use of Digital Computers in Structural Mechanics [in Russian], Sudpromgiz (1963).

  53. L. G. Dmitriev and P. M. Sosis, Programming the Calculation of Space Structures [in Russian], Gosstroiizdat, Kiev (1963).

    Google Scholar 

  54. O. C. Zienkiewicz, “Finite element method: from intuition to generality,” in: Collection of Translations “Mekhanika” [in Russian], No. 6 (1970).

  55. O. C. Zienkiewicz and Y. K. Cheung, Finite Element Method in Problems of Structural and Continuum Mechanics [Russian translation], GONTI, Moscow (1971).

    Google Scholar 

  56. E. N. Il'chenko and A. S. Sakharov, “Solution of large systems of equations in calculating plates and shells,” in: Strength of Materials and Structural Mechanics [in Russian], No. 16, Izd. Budivel'nik, Kiev (1972).

    Google Scholar 

  57. A. A. Il'yushin, Plasticity [in Russian], GITTL, Moscow-Leningrad (1948).

    Google Scholar 

  58. G. R. Cowper, E. Kosko, G. M. Lindberg, and M. D. Olson, “Use of high-precision triangular elements of deflectable plates in static and dynamic problems,” Raketnaya Tekhnika i Kosmonavtika, No. 10 (1969).

  59. A. L. Kvitka and P. P. Voroshko, “Finite element method as applied to the axisymmetric problem of elasticity theory,” Probl. Prochnosti, No. 11 (1970).

  60. V. I. Kel'in and M. F. Fedosov, “Solution of three-dimensional problems of elasticity theory in arbitrary curvilinear coordinates on the basis of a discrete design model,“ Trudy Kievsk. Inst. Inzh. Grazhd. Aviatsii, No. 3 (1969).

  61. V. N. Kislookii, “Vibrations of shells and plates,” in: Strength of Materials and Structural Mechanics [in Russian], No. 8, Izd. Budivel'nik, Kiev (1969).

    Google Scholar 

  62. V. N. Kislookii and T. L. Reva, “Algorithmization of investigations of vibrations and stability of plates,” in: Numerical Methods of Calculating Space Structures [in Russian], Izd. Kievsk. Inzh.-Stroit. Inst. (1969).

  63. V. N. Kislookii and A. S. Sakharov, “Large deflections and stability of shells of complex form,” in: Strength of Materials and Structural Mechanics [in Russian], No. 16, Izd. Budivel'nik, Kiev (1972).

    Google Scholar 

  64. R. W. Clough, “Finite element method in solving the two-dimensional problem of elasticity theory,” in: Computer-Aided Calculation of Structural Members [in Russian], Gosstroiizdat, Moscow (1967).

    Google Scholar 

  65. V. G. Korneev, “Comparison of the finite element method with the variate difference method of solving problems of elasticity theory,” Izv. VNIIGidrotekhnika, 83 (1967).

  66. V. G. Korneev, “Finite element method for solving problems of elastic equilibrium,” in: Structural Mechanics of Structures [in Russian], Izd. LPI, Leningrad (1971).

    Google Scholar 

  67. V. M. Korobkov and V. N. Slivker, “Computer-aided solution of the two-dimensional problem of elasticity theory for rectangular regions,” in: Computational and Organizational Techniques (Construction and Architecture), No. 4, Izd. Literatury po Stroitel'stvu (1968).

  68. J. L. Krahula and G. F. Lauterbach, “Solution of the St. Venant problem by the finite element method,” Radetnaya Tekhnika i Kosmonavtika, No. 12 (1969).

  69. J. L. Krahula and J. F. Polhemus, “Use of Fourier series in the discrete element method,” Raketnaya Tekhnika i Kosmonavtika, No. 4 (1968).

  70. R. D. Cook and J. K. Al-Abdulla, “Some ‘hybrid’ plane quadrangular finite elements,” Raketnaya Tekhnika i Kosmonavtika, No. 11 (1969).

  71. R. Courant, C. Fredricks, and G. Levy, “Difference equations of mathematical physics,” Ukr. Mat. Zh. No. 8 (1940).

  72. J. Khanna, “Criterion of selection of stiffness matrices,” Raketnaya Tekhnika i Kosmonavtika, No. 10 (1965).

  73. J. Khanna and R. F. Hooley, “Comparison and evaluation of stiffness matrices,” Raketnaya Tekhnika i Kosmonavtika, No. 12 (1966).

  74. M. A. Levin, Relation Between Discrete Bar and Continuous Systems in Structural Mechanics and Its Application to the Calculation of Plates, Author's Abstract of Candidate's Dissertation, Minsk (1965).

  75. A. W. Leissa, W. E. Clausen, L. E. Hulbert, and A. T. Hopper, “Comparison of approximate methods of solving problems on bending of plates,” Raketnaya Tekhnika in Kosmonavtika, No. 5 (1969).

  76. H. P. Lae, “Generalized stiffness matrix for an element of a curved beam,” Raketnaya Tekhnika i Kosmonavtika, No. 10 (1969).

  77. S. W. McCormick, “Solution of the two-dimensional problem of elasticity theory,” in: Computer-Aided Calculation of Structural Members [in Russian], gosstroiizdat, Moscow (1967).

    Google Scholar 

  78. A. M. Maslennikov, “Approximate calculation of wall-beam type structures by the slope-deflection method,” in: Reports of the 21st Scientific Conference, Structural Mechanics [in Russian], Izd. Leningr. Inzh.-Stroit. Inst. (1963).

  79. A. M. Maslennikov, “Approximate solution of the two-dimensional problem of elasticity theory by the slope-deflection methods,” in: Reports of the Conference on the Use of Digital Computers in Structural Mechanics [in Russian], Sudpromgiz, Leningrad (1966).

    Google Scholar 

  80. A. M. Maslennikov, “Calculation of slabs on the basis of a discrete design model,” Izv. Vuzov, Stroitel'stvo i Arkhitektura, No. 6 (1966).

  81. A. M. Maslennikov, “Substantiation of a discrete design model,” in: Reports of the 25th Scientific Conference, Structural Mechanics, [in Russian], Izd. Leningr. Inzh.-Stroit. Inst. (1967).

  82. R. R. Meyer and M. B. Harmon, “Finite element method for investigating edge-loaded truncated shells of revolution,” Raketnaya Tekhnika i Kosmonavtika, No. 4 (1963).

  83. É. Sh. Melamed, “Calculation of shells with an arbitrary middle surface on a rectangular plan by the finite element method,” in: Proceedings of the 25th Conference of the Khabarovsk Institute of Transportation Engineers [in Russian] (1967).

  84. É. Sh. Melamed, “Derivation of the stiffness matrix of finite elements for analysis of complex space systems,” Trudy Khabarovsk. Inst. Inzh. Transporta, No. 34 (1968).

  85. É. Sh. Melamed, “Analysis of complex space structures by the direct stiffness method,” Trudy Khabarovsk. Inst. Inzh. Transporta, No. 34 (1968).

  86. R. J. Melosh, “Bases for derivation of matrices for the direct stiffness method,“ Raketnaya Tekhnika i Kosmonavtika, No. 7 (1963).

  87. R. J. Melosh, “Construction of stiffness matrices,” in: Computer-Aided Calculation of Structural Members [Russian translation], IL, Moscow (1967).

    Google Scholar 

  88. R. J. Melosh, “Calculation of massive bodies by methods of structural mechanics of bar systems,” in: Computer-Aided Calculation of Structural Members [Russian translation], IL, Moscow (1967).

    Google Scholar 

  89. L. P. Mironov, “Calculation of a lattice cylindrical shell as a three-dimensional bar system,” Trudy Mosk. Inst. Inzh. Transporta, No. 274 (1968).

  90. S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Izd. Nauka, Moscow (1970).

    Google Scholar 

  91. D. W. Murray, “Convergence of the solutions of the finite element method,” Raketnaya Tekhnika i Kosmonavtika, No. 4 (1970).

  92. D. W. Murray and E. L. Wilson, “Investigation of the supercritical behavior of thin elastic plates by the finite element method,” Raketnaya Tekhnika i Kosmonavtika, No. 10 (1969).

  93. D. R. Navaratna, “Determination of resulting stresses in the case of using the finite element method,” Raketnaya Tekhnika i Kosmonavtika, No. 11 (1966).

  94. L. K. Narets, “Calculation of plates by the E-method,” Trudy Tallinsk. Politekhn. Inst., Seriya A, No. 257 (1967).

  95. J. T. Oden, “Determination of large strains of elastic membranes by the finite element method,” in: Continuous Shells [in Russian], Vol. 1, Stroiizdat, Moscow (1969).

    Google Scholar 

  96. B. O. Almroth and D. Bushnell, “Numerical calculation of various shells of revolution,” Raketnaya Tekhnika i Kosmonavtika, No. 10 (1968).

  97. M. D. Olson, “Some solutions for flutter with the use of finite elements,” Raketnaya Tekhnika i Kosmonavtika, No. 4 (1970).

  98. J. T. Oden, “Calculation of the stiffness matrix of discrete elements of thin shells of arbitrary form,” Raketnaya Tekhnika i Kosmonavtika, No. 5 (1968).

  99. J. H. Percy, T. H. H. Pian, S. Klein, and D. R. Navaratna, “Application of the matrix method to a linear elastic analysis of shells of revolution,” Raketnaya Tekhnika i Kosmonavtika, No. 11 (1965).

  100. Yu. P. Petrov, “Discrete method of calculating the strength of shallow doubly-curved shells rectangular in plan,” in: Dynamics and Strength of Machines [in Russian], No. 4, Izd. Khar'kovsk. Univ. (1966).

  101. Yu. P. Petrov, in: Strength of Materials and the Theory of Constructions [in Russian], Vol. 10, Izdvo Bydivel'nik (1970).

  102. T. H. H. Pian, “Derivation of relations for stiffness matrices based on the selection of the stress distribution law,” Raketnaya Tekhnika i Kosmonavtika, No. 2 (1964).

  103. T. H. H. Pian, “Derivation of the stiffness matrices of elements,” Raketnaya Tekhnika i Kosmonavtika, No. 3 (1964).

  104. A. Pifko and G. Isakson, “Finite element method for analysis of plastic twisting of plates,” Raketnaya Tekhnika i Kosmonavtika, No. 10 (1969).

  105. V. I. Potapenko, “Calculation of systems with yielding connections by the finite element method in a matrix form,” Stroitel'stvo i Arkhitektura Uzbekhistana, No. 5 (1970).

  106. C. A. Prato, “Comments on the report' Exact solution of some solutions by the discrete element method,” Raketnaya Tekhnika i Kosmonavtika, No. 6 (1969).

  107. I. S. Raju and A. K. Rao, “Stiffness matrices of elements in the form of a sector,” Raketnaya Tekhnika i Kosmonavtika, No. 1 (1969).

  108. I. S. Raju and A. K. Rao, “Authors' response to Irons,” Raketnaya Tekhnika i Kosmonavtika, No. 3 (1970).

  109. A. F. Smirnov (editor), “Computer-aided calculation of structural members,” in: Collection of Articles [Russian translation], IL, Moscow (1967).

    Google Scholar 

  110. A. R. Rzhanitsyn, “Representation of a continuous isotropic elastic body in the form of a hinged bar system” in: Investigation of problems of Structural Mechanics and Plasticity Theory [in Russian], Gosstroiizdat, Moscow (1956).

    Google Scholar 

  111. L. Rozin, “A scheme for partitioning equatitioning equations of shell theory,” Inzhenernyi Zhurnal, Mekhanika Tverdogo Tela, No. 2 (1961).

  112. L. A. Rozin, “Method of partitioning the shell theory,” Prikl. Mat. i Mekhan.,25, No. 5 (1961).

  113. L. A. Rozin, “Relation of the finite element method with the Bubnov—Galerkin and Ritz methods,” in: Structural Mechanics of Structures [in Russian], Izd. LPI, Leningrad (1971).

    Google Scholar 

  114. E. I. Sankov and A. P. Goryachev, “Solution of two-dimensional nonlinear problems by the finite element method,” Uchnye Zapiski Gor'kovsk. Univ. Mekhanika, No. 108 (1970).

  115. A. S. Sakharov, “Equilibrium of guy rope nets,” in: Strength of Materials and Structural Mechanics [in Russian], No. 3, Izd. Budivel'nik, Kiev (1965).

    Google Scholar 

  116. A. S. Sakharov, “Investigation of the algorithm for solving net systems of equations of plates and shells,” in: Strength of Materials and Structural Mechanics [in Russian], No. 7, Izd. Budivel'nik, Kiev, (1969).

    Google Scholar 

  117. H. Simpson and D. Antebee, “Investigation of complex shells by the finite element method,” in: Continuous Shells [in Russian], Vol. 1, Stroiizdat, Moscow (1969).

    Google Scholar 

  118. Yu. E. Skabitskii and M. F. Fedosov, “Determination of the stress tensor of an elastic body by the finite element method,” Trudy Kievsk. Inst. Inzh. Grazhd. Aviatsii, No. 3 (1969).

  119. A. F. Smirnov, “Selection of the algorithm for solving a system of crossbeams with a large number of unknowns,” Trudy Mosk. Inst. Inzh. Transporta, No. 155 (1962).

  120. A. F. Smirnov, A. V. Aleksandrov, B. Ya. Lyashchennikov, and N. N. Shaposhnikov, Computer-Aided Calculation of Structures [in Russian], Gosstroiizdat, Moscow (1964).

    Google Scholar 

  121. A. P. Filin, editor, Current Methods of Calculating Complex Statistically Indeterminate Systems, Collection of Articles [Russian translation], IL, Moscow (1962).

    Google Scholar 

  122. N. A. Solovei, “Determination of geometric characteristics in computer-aided solution of problems of the strength of shells of complex configuration” in: Strength of Materials and Structural Mechanics [in Russian], No. 16, Izd. Budivel'nik, Kiev (1972).

    Google Scholar 

  123. P. M. Varvak and A. F. Ryabov, editors, Handbook on Elasticity Theory [in Russian], Izd. Budivel'nik, Kiev (1971).

    Google Scholar 

  124. E. L. Stanton and L. A. Schmit, “Calculation of stresses and displacements in elastoplastic plates by the discrete element method,” Raketnaya Tekhnika i Kosmonavtika, No. 7 (1970).

  125. J. A. Striklin, D. R. Navaratna, and T. H. H. Pian, Raketnaya Tekhnika i Kosmonavtika, No. 11 (1966).

  126. J. A. Striklin, W. E. Haisler, P. T. Tisdale, and R. Gunderson, “Element in the form of an extremely narrowing triangular plate,” Raketnaya Tekhnika i Kosmonavtika, No. 1 (1969).

  127. N. S. Ter-Émanuil'yan, Development and use of the finite element matrix method for solving the two-dimensional problem of an isotropic body with consideration of shear creep,” Mekhan. Polim. No. 4 (1970).

  128. S. P. Timoshenko, History of Strength of Materials, McGraw-Hill, New York (1953).

    Google Scholar 

  129. P. Tong, “Exact solution of some problems by the discrete element method,” Raketnaya Tekhnika i Kosmonavtika, No. 1 (1969).

  130. A. G. Ugodchikov and Yu. G. Korotkikh, Some Methods of Solving Physically Nonlinear Problems of Plates and Shells on a Digital Computer [in Russian], Izd. Naukova Dumka, Kiev (1971).

    Google Scholar 

  131. A. P. Filin, “Calculation of a shell of arbitrary configuration on the basis of a discrete design model,” in: Transactions of the Conference on Theory of Plates and Shells (kazan, 1960), Kazan (1961).

  132. A. P. Filin, “Calculation of three-dimensional bar structures as a system of cross ties and its application to shells with the use of computers, Investigations in Structural Mechanics,” Trudy Mosk Inst. Inzh. Transporta, No. 190 (1962).

  133. A. P. Filin, “Discrete design models in structural mechanics,” Izv. AN SSSR, Mekhan. i Mashinostroenie, No. 5 (1964).

  134. A. P. Filin, “Approximate solution of the three-dimensional problem of elasticity theory, Investigations in Structural Mechanics, in: Trudy Leningr. Inst. Inzh. Zhel-Dor. Transporta, No. 249, Leningrad—Moscow (1966).

  135. A. P. Filin, “Computer-aided calculation of shells on the basis of a discrete design model (finite element method),” in: Continuous Shells [in Russian], Vol. 1, Stroiizdat, Moscow (1969).

    Google Scholar 

  136. J. Fried, “Gradient methods of investigating finite element problems of eigenvalues,” Raketnaya Tekhnika i Kosmonavtika, No. 4 (1969).

  137. J. Fried, “Investigation of time-dependent phenomena by means of discrete elements,” Raketnaya Tekhnika i Kosmonavtika, No. 6 (1969).

  138. J. Fried, “Some aspects of the use of natural coordinates in the discrete element method,” Raketnaya Tekhnika i Kosmonavtika, No. 7 (1969).

  139. A. Khrennikov and S. Tetskan, “Calculation of cylindrical shells by the finite element method,” in: Continuous shells [in Russian], Vol. 1, Stroiizdat, Moscow (1969).

    Google Scholar 

  140. K. M. Khuberyan, “Calculation of arch dams by the general variational-bar method,” Gidrotekh. Stroitel'., No. 3 (1962).

  141. K. M. Khuberyan, “General mixed variational-bar (variational-discrete) method of calculating shells and plates. Some results and prospects of development,” Trudy Tbilisk. NII Sooruzhenii i Gidroénergetiki, No. 1, Tbilisi (1968).

  142. I. M. Cherneva, “Discrete method of calculating plates and shells,” Trudy Leningr. Inst. Inzh. Transporta, No. 249 (1966).

  143. I. M. Cherneva, “Bar design model of plates and shells and finite element method, Theoretical Investigation in Structural Mechanics, Trudy Leningr. Inst. Inzh. Transporta, No. 248 (1968).

  144. V. G. Chudnovskii, Investigation of vibration and stability of plates and laminated systems by the method of partitioning partial differential equations,” in: Calculation of Space Structures [in Russian], No. 2, Gosstroiizdat, Moscow (1967).

    Google Scholar 

  145. N. N. Shaposhnikov, “Calculation of bending of plates by the finite element method,” Trudy Mosk. Inst. Inzh. Transporta, No. 260 (1968).

  146. N. N. Shaposhnikov, “Solution of the two-dimensional problem of elasticity theory by a discrete model,” Trudy Mosk. Inst. Inzh. Transporta, No. 274 (1968).

  147. N. N. Shaposhnikov, “Passage to the limit for a discrete model of the two-dimensional problem of elasticity theory,” Trudy Mosk. Inst. Inzh. Transporta, No. 374 (1968).

  148. N. N. Shaposhnikov, “Calculation of the stability and vibrations of plates by the finite element method,” Investigation in the area of Transport and Structural Mechanics, Trudy. Mosk. Inst. Inzh. Transporta, No. 311 (1970).

  149. V. N. Shevchenko and L. G. Dmitriev, “Bending of nonlinear elastic plates, Computers in the investigation and design of construction installations,” Trudy Kiev ZNIIÉP, Izd. Budivel'nik, Kiev (1970).

    Google Scholar 

  150. L. A. Schmit, F. K. Bogner, and R. L. Fox, “Calculation of structures in the presence of finite deflection with the use of discrete plate and shell elements,” Raketnaya Tekhnika i Kosmonavtika, No. 5 (1968).

  151. W. S. Schnobrich, J. W. Melin, and B. Moraz, “Numerical method of calculating structures partitioned into a system of discrete elements,” in: Continuous Shells [in Russian], Vol. 1, Stroiizdat, Moscow (1969).

    Google Scholar 

  152. H. M. Adelman, D. S. Catherines, and W. C. Walton, “Accuracy of calculating stresses by the finite element method,” Raketnaya Tekhnika i Kosmonavtika, No. 3 (1970).

  153. F. A. Akyuz and J. E. Merwin, “Solution of nonlinear problems of elastoplasticity by the discrete element method” Raketnaya Tekhnika i Kosmonavtika, No. 10 (1968).

  154. J. H. Argyris, Energy Theorems and Structural Analysis, Butterworth, London (1960).

    Google Scholar 

  155. J. H. Argyris, “Matrix methods of structural analysis,” Proc. 14th Meeting of AGARD, AGARDo-graph, 72 (1962).

  156. J. H. Argyris, S. Kelsey, and H. Kamel, “Matrix method of structural analysis,” AGARDograph, 72, Pergamon Press, Oxford (1963).

    Google Scholar 

  157. J. M. Boisseries, “Generation of two-and three-dimensional finite elements,” Intern. Journal for Numerical Methods in Engineering, Vol. 3 (1971).

  158. G. Brebbia and J. Connor, “Geometrically nonlinear finite-element analysis,” J. of the Eng. Mech. Div.,95, No. EM2 (1969).

  159. D. Bushnell, “Computer analysis of shell structures,“ Paper Amer. Soc. Mechn. Eng., N WA PVP-13 (1969).

  160. G. Cantin, “Rigid body motions in curved finite elements,” AIAA Journal,8, No. 7 (1970).

  161. R. Courant, “Variable methods for the solution of problems of equilibrium and vibration,” Bull. Amer. Math. Soc.49, No. 1 (1943).

  162. S. H. Crandall, Engineering Analysis, McGraw-Hill, N. Y. (1956).

    Google Scholar 

  163. P. H. Denke, “The matrix solution of certain problems in structural analysis,” J. Aeronaut, Sci.,23 (1956).

  164. J. Ergatoudis, B. M. Irons, and O. S. Zienkiewicz, “Curved isoparametric quadrilateral elements in finite element analysis,” Intern. J. Solids and Struct.,4, No. 1 (1968).

  165. J. Ergatoudis, B. M. Irons, and O. C. Zienkiewicz, “Three-dimensional analysis of arch dams and their foundations,” Proc. Symp. on Arch. Dams, Inst. Engrs., London (1968).

  166. L. Euler, “De motu vibratorio tympanorum,” Navi Commentarie Acad. Petropolit, No. 10 (1966).

  167. H. Fette, “Gekrummte finite Elemente bei Schalengerechnungen,” Z. Angew. Math. und Mech., No. 50 (1970).

  168. R. H. Gallagher, “A correlation study of methods of matrix structural analysis,” AGARDograph, 69 (1962).

  169. R. H. Gallagher, J. Pablog, and P. P. Bijlaard, “Stress analysis of heated complex shapes,” ARS Journal,32, No. 5 (1962).

  170. v. Grastan, “Anwendung lines 'elementen-methode'-Programmes zur Lösung von Temperaturvertilungsproblemen,” Nuclear Engineering and Desing, No. 15 (1971).

  171. D. S. Griffin and R. B. Kellog, “A numerical solution of axially symmetrical and plane elasticity problems,” Intern. J. Solids and Struct., No. 3 (1967).

  172. A. Hrennikoff, “Solution of problems in elasticity by the framework method,” J. Appl. Mech., No. 8, Ser. A (1941).

  173. J. C. Jofrtet and G. M. Neice, “Finite element analysis of reinforced concrete slabs,” J. of the Struct. Div.,97, No. ST3 (1971).

  174. P. Lannay, “The thermoelastic computer code “TITUS,” Prepr. 1st. Intern. Conf. Struct. Mech. React. S-L.S. a. M5-4/1-M5-4.

  175. S. Levy, “Structural analysis and influence coefficient for delta wings,” J. Aernonaut. Sci., No. 20 (1953).

  176. P. V. Marcal, “Effect of initial displacement on the problem of large deflection and stability,” Techn. Rep. ARPA, 54 Brown Univ. (1967).

  177. C. Mareczek and D. Scharpf, “Three dimensional analysis of a pretwisted impellerblade by means of ASKA,” Research Report, No. 9, Pratt and Whitney, I. S. D., Univ. of Stuttgart (1968).

  178. H. C. Martin, “Plane elasticity problems and the direct stiffness method,” Trends in Engineering,13 (1961).

  179. D. McHenry, “A lattice analogy for the solution of plane stress problems,“ J. Inst. Civil. Eng., No. 21 (1943).

  180. R. W. McLay, “Completeness and convergence properties of finite element displacement functions — a general treatment,” AIAA Journal (1967).

  181. R. J. Melosh, “Basis for derivation of matrices for the direct stiffness method,” AIAA Journal (1963).

  182. W. Mizumachi, “Application of the finite element method to three-dimensional stress and vibration analysis of BWR primary plant systems,” Prepr. 1st. Intern. Conf. Struct. Mech. React. Technol., Berlin, Vol. 5, M6-7/1-M6-7/17 (1971).

  183. K. H. Murray, “Comments on the convergence of finite element solutions,” AIAA Journal,8, No. 4 (1970).

  184. N. M. Newmark, “Numerical methods of analysis in bars, plates and elastic bodies, Numerical methods of analysis in engineering, edited by L. E. Grinter, MacMillan (1949).

  185. E. R. Oliveira, “Theoretical foundations of the finite element method,” Intern. J. Solids and Struct.,4, No. 10 (1968).

  186. B. W. Pappenfuss, “Lateral plate deflection by stiffness matrix methods, M. S. Thesis, Dept. of Civil Eng., Univ. of Washington, Seattle, Wash (1959).

    Google Scholar 

  187. K. Parikh and C. H. Norris, “Analysis of Shells using a framework analogy, Paper Presented at the World Conf. on Shell Structures, San Francisco, National Academy of Sci., No. 2 (1960).

  188. J. S. Prezemieniecki, “Triangular plate element in the matrix force method of structural analysis,” AIAA Jornal8, No. 8 (1963).

  189. L. A. Schmit and G. R. Monforton, “Finite deflection discrete element analysis of sandwich plates and cylindrical shells with laminated forces,” AIAA Journal,8, No. 8 (1970).

  190. R. T. Severn and D. R. Taylor, “The finite element method for flexure of slabs when stress distributions are assumed,” Proc. Inst. Civ. Engrs., 34 (1966).

  191. E. L. Stanton and L. A. Schmit, “A discrete element stress and displacement analysis of elastoplastic plates,” AIAA Journal, No. 7 (1970).

  192. M. J. Turner, R. W. Clough, H. C. Martin and L. J. Topp, “Stiffness and deflection analysis of complex structures,” J. Aeronaut. Sci.23, No. 9 (1956).

  193. O. C. Zienkiewicz and Y. K. Cheung, “Finite elements in the solution of field problems,” Engineering,220 (1965).

  194. O. C. Zienkiewicz and Y. K. Cheung, The Finite Element Method in Structural and Continuum Mechanics, London (1967).

  195. O. C. Zienkiewicz, B. W. Irons, J. Ergatoudis, S Ahmad, and F. C. Scott, “Isoparametric and associated element families for two-and three-dimensional analysis,” Chap. 13 of Finite Element Method in Stress Analysis, Edited by I. Holand and K. Bell, Trondheim, Norway (1969).

  196. O. C. Zienkiewicz, C. Taylor, and A. Gallico, “Three dimensional finite element analysis of the Tachien arc dam,” Water Power, No. 5-6 (1970).

Download references

Authors

Additional information

Kiev Civil Engineering Institute. Translated from Prikladnaya Mekhanika, Vol. 8, No. 8, pp. 3–28, August, 1972.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vainberg, D.V., Gorodetskii, A.S., Kirichevskii, V.V. et al. Finite element method in mechanics of deformable bodies. Soviet Applied Mechanics 8, 819–840 (1972). https://doi.org/10.1007/BF00886062

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00886062

Keywords

Navigation