Skip to main content
Log in

Antifungal activity of cysteine, its effect on C-21 oxygenated lanosterol derivatives and other lipids in Inonofus obliquus, in vitro

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The antifungal activity of cysteine (2-amino-3-mercaptopropionic acid) on mycelial growth and the production of lanosterol, 3,β-hydroxy-lanosta-8,24-dien-21-al, 3,β-21,dihydroxy-lanosta-8,24-diene, trametenolic acid and ergosterol were investigated in solid and liquid cultures ofInonotus obliquus at cysteine concentrations of 0.9 and 9.0 mm by means of thinlayer chromatography densitometry. Cysteine elicited the production of ergosterol in all the cultures and at a concentration of 0.9 mm distinctly elicited the production of 3,β-hydroxy-lanosta-8,24-dien-21-al. At 9.0 mm, cysteine had greater antifungal activity than at 0.9 mm, decreasing growth and the production of metabolities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuzinadah RA, Read DJ (1988) Amino acids as nitrogen sources for ectomycorrhizal fungi: Utilization of invidual amino acids. Trans Br Mycol See 91:473–480

    Google Scholar 

  • Adams HK, Campell MI, McCorkindale NJ (1967) Ergosterol peroxide: a fungal artefact. Nature 216:397

    Google Scholar 

  • Cochrane VW (1958) Physiology of fungi. Wiley, New York

    Google Scholar 

  • Daigle DJ, Cotty OJ (1991) The influence of cysteine, cysteine analogs and other amino acids on spore germination of Altenaria species. J Can Bot 69:2353–2356

    Google Scholar 

  • Goulston G, Mercer EL Goad LJ (1975). The identification of 24-methylene-24-25-dihydrolanosterol and other possible ergosterol precursors inPhycomyces blakesleeanus andAgaricus campestris. Phytochemistry 14:457–462

    Google Scholar 

  • Griffin DH (1981) Fungal physiology. Wiley, New York

    Google Scholar 

  • Hirotani M, Asaka I, Ino C, Furuya T, Shiro M (1987) Ganoredic acid derivatives and ergosta-4,7,22-triene-3,6-dione fromGanoderma lucidum. Phytochemistry 26:2797–2803

    Google Scholar 

  • Huxtable J-R (1986) Biochemistry of sulphur, Lafraconi WM (ed) Plenum Press, New York.

    Google Scholar 

  • Kahlos K (1994a)Inonotus obliquus (Chaga fungus): in vitro culture and production of inotodiol, sterols and other secondary metabolities. In: Bajai YPS. (ed) Biotechnology in agriculture and foresty, vol 26. (Medicinal and aromatic plants VI) Springer Berlin Heidelberg New York, pp 179–197

    Google Scholar 

  • Kahlos K (1994b) The effects of some amino acids on growth and lipid production inInonotus obliquus grownin vitro. Acta Biotechnol 14:169–179

    Google Scholar 

  • Kahlos K, Kangas L, Hiltunen R (1987) Antitumour activity of some compounds and fractions from an n-hexane extract ofInonotus obliquus. Acta Pharm Fenn 96:33–40.

    Google Scholar 

  • Kahlos K, Kangas L, Hiltunen R (1989) Ergosterol peroxide an active compound fromInonotus radiatus. Planta Med 55:389–390

    Google Scholar 

  • Kahlos K, Vares T, Hiltunen R (1990) Optimization of pH level and effect of pH on secondary metabolites of two strains ofInonotus obliquus, in vitro. Planta Med 56:627

    Google Scholar 

  • Kahlos K, Siirilä M, Hiltunen R (1991) Effects of chitosan on fungal growth and the production of lipid compounds in Inonotus obliquus. Planta Med: 56 A 16

    Google Scholar 

  • Kahlos K, Hännikäinen T, Hiltunen R (1993) The antifungal activity of allicin and its effect on some lanostanes in vitro. XII Helsinki University Course in Drug Research, 17-18. June 1993 Espco, Finland, Abstracts p 75. The Finnish Pharmaceutical Society, Helsinki

    Google Scholar 

  • Kermasha S, Gloetghebeur M, Monfenette A, Metche M, Rovel B (1993) Inhibitory effects of cysteine and aromatic acids on tyrosinase activity. Phytochemistry 34:349–353

    Google Scholar 

  • Kunert J (1981) Organic sulphur sources for the growth of the dermatophyte Microsporum gypseum. Folia Microbiol 26:201–206

    Google Scholar 

  • Minaeva VG (1970) Medicinal plants of Siberia. Navka, Novosibirsk

    Google Scholar 

  • Naim M, Zuker I, Zehavi U, Rouseff R (1993) Inhibition of thiol compounds off flavor formation in stored orange juice. 2. Effect ofl-cysteine andn-acetyl-l-cysteine onp-vinylguaiacol formation. J Agric Food Chem 41:1359–1361

    Google Scholar 

  • Owen HR, Wengerd D, Miller AR (1991) Culture medium pH is influenced by carbohydrate source, gelling agent, activated charcoal and medium storage method. Plant Cell Rep 10:583–586

    Google Scholar 

  • Pandey DK, Chandra H, Tripathi NN, Dixit SN (1984) Antimycotic activity of some amino acids against dermatophytes. Arzneim Forsch 34:554–556

    Google Scholar 

  • Sheikh YM, Djerassi C (1974) Steroids from sponges. Tetrahedron 30:4095–4103

    Google Scholar 

  • Slaughter JC (1989) Sulphur compounds in fungi. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp 91–106

    Google Scholar 

  • Thuy NN, Galgoczy J, Novak EK (1981) Morphogenetic effect of L-cysteine on dermatophytes. Acta Microbiol Acad Sci Hung 28:347–457

    Google Scholar 

  • Torres MR, Viladirich R, Sachis V, Canela R (1992) Influence of age and ergosterol content in mycelium of Aspergillus ochraceus. Lett Appl Microbiol 15:20–22

    Google Scholar 

  • Turner WB (1971) Fungal metabolites. Academic Press, London

    Google Scholar 

  • Weete JD (1973) Sterols of the fungi: distribution and biosynthesis. Phytochemistry 12:1843–1864

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahlos, K., Tikka, V.H. Antifungal activity of cysteine, its effect on C-21 oxygenated lanosterol derivatives and other lipids in Inonofus obliquus, in vitro. Appl Microbiol Biotechnol 42, 385–390 (1994). https://doi.org/10.1007/BF00902746

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00902746

Keywords

Navigation