Skip to main content
Log in

Microtubules and filaments in the taste bud

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Electron microscopic investigation in the taste bud of the foliate papillae of the rabbit has distinguished two filamentous structures: microtubules and filaments.

Microtubules are about 230–270 Å in diameter and have a light core about 150 Å in diameter and a wall about 60 Å in thickness.

Filaments appear as tubule-like structures about 70–100 Å in diameter, with a light core about 30 Å in diameter and a wall thickness about 30–40 Å in diameter. The wall seems to be formed by some dense subunits from which spoke-like side-arms appear to radiate. Such tubule-like substructure is easily recognizable in the apical region of the cells.

Filaments are prominent in number as compared to microtubules.

In the taste bud, the differentiation of the cells is accompanied by a progressive increase in number of filaments. In the mature cells, bundles of filaments are arranged parallel to the longitudinally oriented plasma membranes of the cells whereas in the immature cells they are randomly arranged.

The cytoskeletal and intracellular transport function of filamentous structures is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R. D.: Diversity and characteristics of cytoplasmic movement. Neurosci. Res. Progr. Bull.5, 329–332 (1967).

    Google Scholar 

  • Behnke, O.: Cytoplasmic microtubules in vertebrate cells. J. Ultrastruct. Res.12, 241 (1965a) (Abstract).

    Google Scholar 

  • —: Further studies on microtubules. A marginal bundle in human and rat thrombocyte. J. Ultrastruct. Res.13, 469–477 (1965b).

    Google Scholar 

  • —, Forer, A.: Evidence for four classes of microtubules in individual cells. J. Cell Sci.2, 169–192 (1967).

    Google Scholar 

  • Beidler, L. M., Smallman, R. L.: Renewal of cells within taste buds. J. Cell Biol.27, 263–272 (1965).

    Google Scholar 

  • Borisy, G. G., Taylor, E. W.: The mechanism of action of colchicine: binding of colchicine-3H to cellular protein. J. Cell Biol.,34, 525–533 (1967).

    Google Scholar 

  • Buckley, I. K., Porter, K. R.: Cytoplasmic fibrils in living cultured cells. Protoplasma (Wien)64, 349–380 (1967).

    Google Scholar 

  • Cloney, R. A.: Cytoplasmic filaments and cell movements: epidermal cells during Ascidian metamorphosis. J. Ultrastruct. Res.14, 300–328 (1966).

    Google Scholar 

  • —: Cytoplasmic filaments and morphogenesis: the role of the notochord in Ascidian metamorphosis. Z. Zellforsch.100, 31–53 (1969).

    Google Scholar 

  • De Santo, R. S., Dudley, P. L.: Ultramicroscopic filaments in the ascidianBotryllus schlosseri (Pallas) and their possible role in ampullar contractions. J. Ultrastruct. Res.28, 259–274 (1969).

    Google Scholar 

  • De Thé, G.: Cytoplasmic microtubules in different animal cells. J. Cell Biol.23, 265–275 (1964).

    Google Scholar 

  • Farbman, A. I.: Fine structure of the taste bud. J. Ultrastruct. Res.12, 328–350 (1965).

    Google Scholar 

  • Farquhar, M., Palade, G. E.: Junctional complexes in various epithelia. J. Cell Biol.17, 375–412 (1963).

    Google Scholar 

  • Fawcett, D. W., Witebski, F.: Observations of the ultrastructure of nucleated erythrocytes and thrombocytes, with particular reference to the structural basis of their discoidal shape. Z. Zellforsch.62 785–806 (1964).

    Google Scholar 

  • Gall J. G.: Microtubule fine structure. J. Cell Biol.31, 639–643 (1966).

    Google Scholar 

  • Gibbins J. R., Tilney, L. G., Porter, K. R.: Microtubules in the formation and development of the primary mesenchyme inArbacia punctulata. I. The distribution of microtubules J. Cell Biol.41, 201–226 (1969).

    Google Scholar 

  • Green, L.: Mechanisms of movements of granules in melanocytes ofFundulus heteroclitus. Proc. nat. Acad. Sci. (Wash.)59, 1179–1186 (1968).

    Google Scholar 

  • Huneeus, F. C., Davison, P. F.: Fibrillar proteins from squid axons. I. Neurofilament protein. J. molec. Biol.52, 415–428 (1970).

    Google Scholar 

  • Inoué, S.: Organization and function of the mitotic spindle. In: Primitive motile systems in cell biology (R. D. Allen and N. Kamiya, eds.), p. 549–598. New York: Academic Press 1964.

    Google Scholar 

  • Iurato, S.: Submicroscopic structure of the membranous labyrinth. II. The epithelium of the Corti's organ. Z. Zellforsch.53, 259–298 (1961).

    Google Scholar 

  • Karlsson, U., Schultz, R. L.: Fixation of the central nervous system for electron microscopy by aldehyde perfusion. I. Preservation with aldehyde perfusates versus direct perfusion with osmium tetroxide with special reference to membranes and the extracellular space. J. Ultrastruct. Res.12, 160–186 (1965).

    Google Scholar 

  • Kohno, K.: Neurotubules contained within the dendrites and axon of Purkinje cell of frog. Bull. Tokyo Med. Dent. Univ.11, 411–442 (1964).

    Google Scholar 

  • Lubinska, L., Niemierko, S., Oderfelt, B., Szwarc, L., Zelena, J.: Bidirectional movements of axoplasm in peripheral nerve fibers. Acta Biol. exp. (Warszawa)23, 239–247 (1963).

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy embedding methods. J. biophys. biochem. Cytol.9, 409–414 (1961).

    Google Scholar 

  • McIntosh, J. R., Porter, K. R.: Microtubules in the spermatides of the domestic fowl. J. Cell Biol.35, 153–173 (1967).

    Google Scholar 

  • McNabb, J. D., Sandborn, E.: Filaments in the microvillous border of intestinal cells. J. Cell Biol.22, 701–704 (1964).

    Google Scholar 

  • Millonig, G.: Advantages of a phosphate buffer for OsO4 solutions in fixation. J. appl. Physiol.32, 1637 (1961) (Abstract).

    Google Scholar 

  • Murray, R. G., Murray, A.: Fine structure of taste buds of rabbit foliate papillae. J. Ultrastruct. Res.19, 327–353 (1967).

    Google Scholar 

  • Olivieri Sangiacomo, C.: Filamentous structures in normal taste bud. Experientia (Basel)26, 1121–1122 (1970a).

    Google Scholar 

  • —: Ultrastructural modifications of denervated taste buds. Z. Zellforsch.108, 397–414 (1970b).

    Google Scholar 

  • Orzalesi, N., Bairati, A.: Filamentous structures in the inner segment of human retinal rods. J. Cell Biol.20, 509–514 (1964).

    Google Scholar 

  • Pannese, E.: Detection of neurofilaments in the perikaryon of hypertrophic nerve cells. J. Cell Biol.13, 457–461 (1962).

    Google Scholar 

  • Peters, A., Vaughn, E.: Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves. J. Cell Biol.32, 113–119 (1967).

    Google Scholar 

  • Porter, K. R.: Cytoplasmic microtubules and their functions. In: Ciba Foundation Symposium on Principles of Biomolecular Organization (G.E.W. Wolstenholme and M. O'Connor, eds.), p. 308–345. London: J. & Churchill Ltd. 1966.

    Google Scholar 

  • Renaud, F. L., Rowe, A. J., Gibbons, I. R.: Some properties of the protein forming the outer fibers of cilia. J. Cell Biol.36, 79–90 (1968).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–212 (1963).

    Google Scholar 

  • Robbins, F., Gonatas, N. K.: The ultrastructure of mammalian cells during the mitotic cycle. J. Cell Biol.21, 429–463 (1964).

    Google Scholar 

  • Rudzinska, M. A.: Ultrastructures involved in the feeding mechanisms of suctoria. Ann. N. Y. Acad. Sci.29, 512–525 (1967).

    Google Scholar 

  • Sabatini, D. D., Bensch, K. G., Barrnett, R. J.: Cytochemistry and the electron microscope. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol.17, 19–58 (1963).

    Google Scholar 

  • Sandborn, F., Koen, P. F., McNabb, J. D., Moore, G.: Cytoplasmic microtubulus in mammalian cells. J. Ultrastruct. Res.19, 147–165 (1967).

    Google Scholar 

  • Schmitt, F. O.: The molecular biology of neuronal fibrous proteins. Neurosci. Res. Progr. Bull.6, 119–144 (1968).

    Google Scholar 

  • —, Davison, P. F.: Biologie Moléculaire des Neurofilaments. In: Actualités neurophysiologiques, 3ième serie (Monnier, A.-M., ad.), p. 355–369. Paris: Masson 1961.

    Google Scholar 

  • — —: Chemical, structural, and immunological studies of nerve axon protein. Ber. Bunsenges. physik. Chem.68, 887–889 (1964).

    Google Scholar 

  • Sechrist, J. W.: Neurocytogenesis. I. Neurofibrils, neurofilaments, and the terminal mitotic cycle. Amer. J. Anat.124, 117–134 (1969).

    Google Scholar 

  • Shelanski, M. L., Taylor, E. W.: Isolation of a protein subunit from microtubules. J. Cell Biol.34, 549–554 (1967).

    Google Scholar 

  • — —: Properties of the protein subunit of central-pair and outer-doublet microtubules of sea urchin flagella. J. Cell Biol.38, 304–315 (1968).

    Google Scholar 

  • Slautterback, D. B.: Cytoplasmic microtubules. I. Hydra. J. Cell Biol.18, 367–388 (1963).

    Google Scholar 

  • Stephens, R. E.: Thermal fractionation of outer fiberdoublet microtubules into A- and B-sub-fiber components: A- and B-tubuli. J. molec. Biol.47, 353–363 (1970).

    Google Scholar 

  • Szollosi, D.: The structure and function of centrioles and their satellites in the jellyfishPhialidium gregarium. J. Cell Biol.21, 465–479 (1964).

    Google Scholar 

  • —: Cortical cytoplasmic filaments of cleaving eggs: a structural element corresponding to the contractile ring. J. Cell Biol.44, 192–209 (1970).

    Google Scholar 

  • Tilney, L. G.: The assembly of microtubules and their role in the development of cell form. Develop. Biol.2 (Suppl.), 63–102 (1968a).

    Google Scholar 

  • —: Studies on the microtubules in Heliozoa. IV. The effect of colchicine on the formation and maintenance of the axopodia ofActinosphaerium nucleofilum. J. Cell Sci.3, 549–562 (1968b).

    Google Scholar 

  • Tilney, L. G., Gibbins, J. R.: Microtubules in the formation and development of the primary mesenchyme inArbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J. Cell Biol.41, 201–226 (1969).

    Google Scholar 

  • Trujillo-Cenóz, O.: Electron microscope study of the rabbit gustatory bud. Z. Zellforsch.46, 272–280 (1957).

    Google Scholar 

  • Vazquez-Nin, G. H., Sotelo, J. R.: Neurofibrillar differentiation during embryonary growth. J. comp. Neurol.128, 313–332 (1966).

    Google Scholar 

  • Watson, M. L.: Staining of tissue sections for electron-microscopy with heavy metals. J. biophys. biochem. Cytol.4, 375–478 (1958).

    Google Scholar 

  • Weisenberg, R. C., Borisy, G. G., Taylor, E. W.: The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry7, 4466–4479 (1968).

    Google Scholar 

  • Weiss, P.: Neuronal dynamics. Neurosci. Res. Prog. Bull.5, 371–400 (1967).

    Google Scholar 

  • Wisniewski, H., Shelanski, M. L., Terry, R. D.: Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells. J. Cell Biol.38, 224–229 (1968).

    Google Scholar 

  • Witkus, E. R., Grillo, R. S., Smith, W. J.: Microtubule bundles in the hindgut epithelium of the woodlouseOniscus ascellus. J. Ultrastruct. Res.29, 182–190 (1969).

    Google Scholar 

  • Wuerker, R. B., Palay, S. L.: Neurofilaments and microtubules in anterior horn cells of the rat. Tissue and Cell1, 387–402 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Grateful acknowledgment is made to Dr. Nicolò Miani for his helpful discussion and critical reading of the manuscript and to Mr. Vincenzo Panetta for his skillful assistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivieri-Sangiacomo, C. Microtubules and filaments in the taste bud. Z.Zellforsch 122, 397–410 (1971). https://doi.org/10.1007/BF00935998

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00935998

Key-Words

Navigation