Skip to main content
Log in

Fluid flow over a thin deformable porous layer

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

The flow of a viscous fluid over a thin, deformable porous layer fixed to the solid wall of a channel is considered. The coupled equations for the fluid velocity and the infinitesimal deformation of the solid matrix within the porous layer are developed using binary mixture theory, Darcy's law and the assumption of linear elasticity. The case of pure shear is solved analytically for the displacement of the solid matrix, the fluid velocity both in the porous medium and the fluid above it. For a thin porous layer the boundary condition for the fluid velocity at the fluid-matrix interface is derived. This condition replaces the usual no slip condition and can be applied without solving for the flow in the porous layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Turner, G. C. Clough and C. C. Michel,The effects of cationised ferritin and native ferritin upon filtration coefficients of single frog capillaries. Evidence that proteins in the endothelial cell coat influence permeability. Microvascular Res.,25, 205–222 (1983).

    Google Scholar 

  2. G. Schettler, R. M. Nerem, H. Schmid-Schoenbein, H. Mori and C. Diehm (Eds.),Fluid Dynamics as a Localizing Factor in Atherosclerosis. Springer-Verlag, Berlin 1983.

    Google Scholar 

  3. K. Terzaghi,Erdbaumechanik auf Bodenphysikalischen Grundlagen. Deuticke 1925.

  4. M. A. Biot,General theory of three-dimensional consolidation. J. Appl. Phys.,12, 155–164 (1941).

    Google Scholar 

  5. M. A. Biot,Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys.,26, 182–185 (1955).

    Google Scholar 

  6. M. A. Biot,Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys.,27, 240–253 (1956).

    Google Scholar 

  7. R. J. Atkin and R. E. Craine,Continuum theories of mixtures: Basic theory and historical development. Quart. J. Mech. Appl. Math.,29, 209–244 (1976).

    Google Scholar 

  8. R. M. Bowen,Incompressible porous media models by the theory of mixtures. Int. J. Engng. Sci.,18, 1129–1148 (1980).

    Google Scholar 

  9. A. Bedford and D. S. Drumheller,Recent advances, theory of immiscible and structured mixtures. Int. J. Engng. Sci.,21, 863–960 (1983).

    Google Scholar 

  10. D. E. Kenyon,The theory of an incompressible solid-fluid mixture. Arch. Rat. Mech. Anal.,62, 131–147 (1976).

    Google Scholar 

  11. V. C. Mow, M. H. Holmes and W. M. Lai,Fluid transport and mechanical properties of articular cartilage: a review. J. Biomechanics,17, 377–394 (1984).

    Google Scholar 

  12. D. E. Kenyon,A mathematical model of water flux through aortic tissue. Bull. Math. Biology,41, 79–90 (1979).

    Google Scholar 

  13. G. Jayaraman,Water transport in the arterial wall-A theoretical study. J. Biomechanics,16, 833–840 (1983).

    Google Scholar 

  14. R. Jain and G. Jayaraman,A theoretical model for water flux through the arterial wall. J. Biomech. Engng.,109, 311–317 (1987)

    Google Scholar 

  15. V. C. Mow, M. K. Kwan, W. M. Lai and M. H. Holmes,A finite deformation theory for nonlinearly permeable soft hydrated biological tissues. Frontiers in Biomechanics, G. Schmid-Schoenbein, S. L.-Y. Woo and B. W. Zweifach (eds), Springer-Verlag, New York, pp. 153–179, 1985.

    Google Scholar 

  16. M. H. Holmes,A theoretical analysis for determining the nonlinear hydraulic permeability of a soft tissue from a permeation experiment. Bull. Math. Biology,47, 669–683 (1985).

    Google Scholar 

  17. M. H. Holmes and V. C. Mow,The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomechanics,23, 1145–1156 (1990).

    Google Scholar 

  18. C. W. J. Oomens, D. H. Van Campen and H. J. Grootenboer,A mixture approach to the mechanics of skin. J. Biomechanics,20, 877–885 (1987).

    Google Scholar 

  19. G. S. Beavers and D. D. Joseph,Boundary condition at a naturally permeable wall. J. Fluid Mech.,30, 197–207 (1967).

    Google Scholar 

  20. G. I. Taylor,A model for the boundary condition of a porous material. J. Fluid Mech.,49, 319–326 (1971).

    Google Scholar 

  21. S. Richardson,A model for the boundary condition of a porous material, Part 2. J. Fluid Mech.,49, 327–336 (1971).

    Google Scholar 

  22. P. G. Saffman,On the boundary condition at the surface of a porous medium. Studies in Appl. Math.,1, 93–101 (1971).

    Google Scholar 

  23. H. K. Brinkman,A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res.,A1, 27–34 (1947).

    Google Scholar 

  24. C. K. W. Tarn,The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech.,38, 537–546 (1969).

    Google Scholar 

  25. T. S. Lundgren,Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech.,51, 273–299 (1972).

    Google Scholar 

  26. S. Kim and W. B. Russell,Modelling of porous media by renormalization of the Stokes equation. J. Fluid Mech.,154, 269–286 (1985).

    Google Scholar 

  27. J. S. Hou, M. H. Holmes, W. M. Lai and V. C. Mow,Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications. J. Biomech. Engng.,111, 78–87 (1989).

    Google Scholar 

  28. M. H. Holmes,Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression. J. Biomech Engng.,108, 372–381 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, S.I., Parkerf, K.H. & Aldis, G.K. Fluid flow over a thin deformable porous layer. Z. angew. Math. Phys. 42, 633–648 (1991). https://doi.org/10.1007/BF00944763

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00944763

Keywords

Navigation