Skip to main content
Log in

On the symmetric conservative form of Landau's superfluid equations

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Summary

It is shown how to obtain Landau's equations for a superfluid in a symmetric conservative form. On account of the constraints involved, this case is more complicated than those of the classical theory developed by Godunov and by other authors.

Sunto

Si dimostra che è possibile porre in forma simmetrica conservativa il sistema di equazioni di Landau del superfluido. A causa dei vincoli a cui é soggetto il moto del sistema la teoria che si usa risulta piú complessa di quella classica sviluppata da Godunov e da altri autori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kapitza,Viscosity of liquid helium below the λ-Point. Nature141, 74 (1938).

    Google Scholar 

  2. L. Landau,The theory of superfluidity of helium II. J. Phys. USSR,5, 71 (1941).

    Google Scholar 

  3. L. Landau and E. Lifchitz,Mécanique des fluides. M.I.R. Moscow 1971.

    Google Scholar 

  4. I. M. Khalatnikov,An introduction to the theory of superfluidity. W. A. Benjamin, New York 1965.

    Google Scholar 

  5. J. Putterman,Superfluid hydrodynamics. North Holland, Amsterdam 1974.

    Google Scholar 

  6. K. O. Friedrichs and P. D. Lax,Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. U.S.A.,68, 1686 (1971).

    Google Scholar 

  7. G. Boillat,Sur l'existence et la recherche d'équations de conservation supplémentaires pour les systèmes hyperboliques. C. R. Acad. Sc. Paris,278, Série A, 909 (1974).

    Google Scholar 

  8. A. E. Fischer and J. E. Marsden,The Einstein evolution equations as a first order quasi-linear symmetric hyperbolic system. Commun. Math. Phys., 28, 1 (1972).

    Google Scholar 

  9. P. D. Lax,Shock waves and entropy, in: Contributions to nonlinear functional analysis. Ed. by E. H. Zarantonello, Academic Press, New York 1971.

    Google Scholar 

  10. G. Boillat,Sur une fonction croissante comme l'entropie et génératrice des chocs dans les systèmes hyperboliques. C. R. Acad. Sc. Paris, 283, Série A, 409 (1976).

    Google Scholar 

  11. G. Boillat and T. Ruggeri,Limite de la vitesse des chocs dans les champs à densité d'énergie convexe. C. R. Acad. Sc. Paris,289, Série A, 257 (1979).

    Google Scholar 

  12. G. Boillat,Symétrisation des systèmes d'équations aux dérivées partielles avec densité d'énergie convexe et contraintes. C. R. Acad. Sc. Paris,295, Série I, 551 (1982);Limitation des vitesses de choc quand la densité d'énergie est convexe et les contraintes involutives. ibid. 297, Série I, 141 (1983).

    Google Scholar 

  13. S. K. Godunov,An interesting class of quasi-linear systems. Sov. Math. 2, 947 (1961).

    Google Scholar 

  14. T. Ruggeri and A. Strumia,Main field and convex covariant density for quasi-linear hyperbolic systems. Ann. Inst. Henri Poincaré 34, 65 (1981).

    Google Scholar 

  15. D. Fusco,Alcune considerazioni sulle onde d'urto in fluidodinamica. Atti Sem. Mat. Fis. Univ. Modena, 28, 223 (1979).

    Google Scholar 

  16. D. Lhuillier,Thermodynamic inequalities of superfluid helium. Phys. Lett.56 A, 295 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boillat, G., Muracchini, A. On the symmetric conservative form of Landau's superfluid equations. Z. angew. Math. Phys. 35, 282–288 (1984). https://doi.org/10.1007/BF00944878

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00944878

Keywords

Navigation