Skip to main content
Log in

Micropolar flow past a stretching sheet

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Summary

This paper studies the flow of an incompressible, constant density micropolar fluid past a stretching sheet. The governing boundary layer equations of the flow are solved numerically using a globally convergent homotopy method in conjunction with a least change secant update quasi-Newton algorithm. The flow pattern depends on three non-dimensional parameters. Some interesting results are illustrated graphically and discussed.

Résumé

Nous étudions l'écoulement d'un fluid micropolaire et incompressible, de densité constante, le long d'une surface qui l'étend. Les équations de la couche limite qui régissent l'écoulement sont résolues numériquement. On utilise un algorithme quasi-Newtonien de type ≪least change secant update≫ avec une méthode homotopique /`a convergence globale. Certains résultats intéressants sont discutés et illustrés graphiquement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Eringen, Int. J. Engng. Sci.2, 205 (1964).

    Article  MathSciNet  Google Scholar 

  2. A. C. Eringen, J. Math. Mech.16, 1 (1966).

    MathSciNet  Google Scholar 

  3. J. R. J. Peddieson and R. P. McNitt, Rec. Adv. Eng. Sci.5, 405 (1970).

    Google Scholar 

  4. A. J. Willson, Proc. Camb. Phil. Soc.67, 469 (1970).

    Article  Google Scholar 

  5. G. Ahmadi, Int. J. Engng. Sci.16, 639 (1976).

    Article  Google Scholar 

  6. H. Kummerer, Rheol. Acta16, 261 (1977).

    Article  Google Scholar 

  7. G. S. Guram and A. C. Smith, Comp. Maths. with Appls.6, 213 (1980).

    Article  MathSciNet  Google Scholar 

  8. R. S. R. Gorla, Int. J. Engng. Sci.21, 25 (1983).

    Article  Google Scholar 

  9. L. T. Watson, T. Y. Li and C. Y. Wang, J. Appl. Mech.45, 435 (1978).

    Article  Google Scholar 

  10. C. Y. Wang and L. T. Watson, Appl. Sci. Res.35, 195 (1979).

    Article  MathSciNet  Google Scholar 

  11. C. Y. Wang and L. T. Watson, Z. angew. Math. Phys.30, 773 (1979).

    Article  Google Scholar 

  12. L. T. Watson, J. Comput. Appl. Math.7, 21 (1981).

    Article  MathSciNet  Google Scholar 

  13. L. T. Watson, Appl. Math. Comput.5, 297 (1979).

    Article  MathSciNet  Google Scholar 

  14. L. T. Watson and D. Fenner, ACM Trans. Math. Software6, 252 (1980).

    Article  Google Scholar 

  15. L. T. Watson, Appl. Math. Comput.9, 111 (1981).

    MathSciNet  Google Scholar 

  16. J. J. More, B. S. Garbow, and K. E. Hillstrom, User Guide for MINPACK-1, ANL-80-74, Argonne National Laboratory (1980).

  17. K. K. Sankara and L. T. Watson, Tech. Rep. CS84006-R, Dept. of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg, VA (1984).

    Google Scholar 

  18. L. J. Crane, Z. angew. Math. Phys.21, 645 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work performed at Sandia National Laboratories supported by the U. S. Department of Energy under contract number DE-AC04-76DP00789.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankara, K.K., Watson, L.T. Micropolar flow past a stretching sheet. Z. Angew. Math. Phys. 36, 845–853 (1985). https://doi.org/10.1007/BF00944898

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00944898

Keywords

Navigation