Skip to main content
Log in

Viscoelastic flow in a curved channel: A similarity solution for the Oldroyd-B fluid

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

A similarity solution is used to analyse the flow of the Oldroyd fluid B, which includes the Newtonian and Maxwell fluids, in a curved channel modelled by the narrow annular region between two circular concentric cylinders of large radius. The solution is exact, including inertial forces. It is found that the non-Netonian kinematics are very similar to the Newtonian ones, although some stress components can become very large. At high Reynolds number a boundary layer is developed at the inner cylinder. The structure of this boundary layer is asymptotically analysed for the Newtonian fluid. Non-Newtonian stress boundary layers are also developed at the inner cylinder at large Reynolds numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, R. C. & Brown, R. A., Paper presented at the 6th Workshop on Numerical Methods in Non-Newtonian Flows, Denmark, June 1989.

  2. Berman, N. S. & Parsch, M. A.,Laser doppler velocity measurements for dilute polymer solutions in the laminar boundary of a rotating disk, J. Rheology30, 441–458 (1986).

    Google Scholar 

  3. Bird, R. B., Armstrong, R. C. & Hassager, O.,Dynamics of Polymeric Liquids: Vol. I Fluid Mechanics, 2nd Edition, John Wiley and Sons, New York 1987.

    Google Scholar 

  4. Boger, D. V.,Dilute polymer solutions and their use to model polymer processing flows, in J. C. Seferis and P. S. Theocaris,Interrelations between processing structure and properties of polymeric materials, Elsevier, Amsterdam 1985.

    Google Scholar 

  5. Burdette, S. R., Coates, P. J., Armstrong, R. C. & Brown, R. A.,Calculations of viscoelastic flow through an axisymmetric corrugated tube using the explicitly elliptic momemtum equation formulation (EEME), J. non-Newt. Fluid Mech.33, 1–23 (1989).

    Google Scholar 

  6. Crochet, M. J.,Numerical simulations of highly viscoelastic flows, Proc. 10th Int. Cong. Rheology, Sydney, August 1988.

  7. Hamza, E. A. & MacDonald, D. A.,A fluid film squeezed between two parallel plane surfaces, J. Fluid Mech.109, 147–160 (1981).

    Google Scholar 

  8. Huilgol, R. R.,Nearly extensional flows, J. non-Newt. Fluid Mech.5, 210–231 (1979).

    Google Scholar 

  9. Hull, A. M.,An exact solution for the slow flow of a general linear viscoelastic fluid through a slit, J. non-Newt. Fluid Mech.8, 327–336 (1981).

    Google Scholar 

  10. Larson, R. G.,Analytic results for viscoelastic flow in a porous tube, J. non-Newt. Fluid Mech., in press.

  11. Larson, R. G.,Viscoelastic inertial flow driven by an axisymmetric accelerated surface, J. Fluid Mech.196, 449–465 (1988).

    Google Scholar 

  12. Magda, J. J. & Larson, R. G.,A transition occurring in ideal elastic liquids during shear flow. J. non-Newt. Fluid Mech.30, 1–19 (1988).

    Google Scholar 

  13. Menon, R. K., Kim-E, M. E., Armstrong, R. C., Brown, R. A. & Brady, J. F.,Injection and suction of an upper-conceded Maxwell fluid through a porous-walled tube, J. non-Newt. Fluid Mech.27, 265–297 (1988).

    Google Scholar 

  14. Phan-Thien, N.,Coaxial-disk flow and flow about a rotating disk of a Maxwellian fluid, J. Fluid Mech.128, 427–442 (1983a).

    Google Scholar 

  15. Phan-Thien, N.,Coaxial-disk flow of an Oldroyd-B fluid: exact solution and instability, J. non-Newt. Fluid Mech.13, 325–340 (1983b).

    Google Scholar 

  16. Phan-Thien, N. & Tanner, R. I.,Viscoelastic squeeze-film flows—Maxwell fluids, J. Fluid Mech.129, 265–281 (1983).

    Google Scholar 

  17. Phan-Thien, N.,Squeezing a viscoelastic fluid from a wedge: an exact solution, J. non-Newt. Fluid Mech.16, 329–345 (1984a).

    Google Scholar 

  18. Phan-Thien, N.,Stagnation flows for the Oldroyd-B fluid, Rheol. Acta23, 172–176 (1984b).

    Google Scholar 

  19. Phan-Thien, N.,Cone -and-plate flow of the Oldroyd-B fluid is unstable, J. non-Newt. Fluid Mech.17, 37–44 (1985a).

    Google Scholar 

  20. Phan-Thien, N.,Squeezing of an Oldroyd-B fluid from a tube: limiting Weissenberg number, Rheol. Acta24, 15–21 (1985b).

    Google Scholar 

  21. Phan-Thien, N.,Squeezing a viscoelastic fluid from a cone: an exact solution, Rheol. Acta24, 119–126 (1985c).

    Google Scholar 

  22. Phan-Thien, N.,A three-dimensional stretching flow of an Oldroyd fluid, Quart. Appl. Maths.XLV, 23–27 (1987).

    Google Scholar 

  23. Pilitsis, S. & Beris, A. N.,Calculations of steady-state viscoelastic flow in an undulating tube, J. non-Newt. Fluid Mech.31, 231–287 (1989).

    Google Scholar 

  24. Pipkin, A. C. & Tanner, R. I.,A survey of theory and experiment in viscometric flows of viscoelastic liquids. In S. Nemat-Nasser,Mechanics Today, Vol. I, Pergamon, Oxford 1972.

    Google Scholar 

  25. Pipkin, A. C. & Owen, D. R.,Nearly viscometric flows, Phys. Fluids10, 836–843 (1967).

    Google Scholar 

  26. Schlichting, H.,Boundary Layer Theory, Translator J. Kestin, 6th Edition, McGraw-Hill, New York 1968.

    Google Scholar 

  27. Tanner, R. I.,Engineering Rheology, Oxford University Press, New York 1988.

    Google Scholar 

  28. Zheng, R., Phan-Thien, N., Tanner, R. I. & Bush, M. B.,Numerical analysis of viscoelastic flow through a sinusoidally corrugated tube using a boundary element method, J. Rheology34, 79–102 (1990a).

    Google Scholar 

  29. Zheng, R., Phan-Thien, N. & Tanner, R. I.,On the flow past a sphere in a cylindrical tube: limiting Weissenberg number, J. non-Newt. Fluid Mech. (1990b) in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan-Thien, N., Zheng, R. Viscoelastic flow in a curved channel: A similarity solution for the Oldroyd-B fluid. Z. angew. Math. Phys. 41, 766–781 (1990). https://doi.org/10.1007/BF00945834

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00945834

Keywords

Navigation