Skip to main content
Log in

Initial state and transition state contributions to solvent effects on activation enthalpies for substitution reactions of tris(1,10-phenanthroline)iron(II) in aqueous methanol

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Activation enthalpies have been determined for aquation of thetris(1,10-phenanthroline)iron(II) cation and for its reaction with hydroxide in 20, 40, and 80% (by volume) methanol, and for its reaction with cyanide in 20 and 40% methanol. Enthalpies of solution of the chloride salt of this cation, and of potassium cyanide, have been determined in the water-methanol mixtures. From these results and ancillary thermodynamic data we have dissected the variations of activation enthalpies for these three substitution reactions with solvent composition into their initial state and transition state components. In the water-rich mixtures (0 to 40% methanol) initial and transition state solvation effects are similar and dominated by the ligands, but in the reaction with hydroxide in 80% methanol there is a striking difference between initial and transition state behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Blandamer and J. Burgess,Pure Appl. Chem., 51, 2087 (1979);Coord. Chem. Rev., 31, 93 (1980).

    Google Scholar 

  2. H. P. Bennetto and E. F. Caldin,J. Chem. Soc. A, 2207 (1971); E. F. Caldin and P. Godfrey,J. Chem. Soc., Faraday Trans. I, 70, 2260 (1974).

    Google Scholar 

  3. E. M. Arnett, W. G. Bentrude, J. J. Burke and P. McC. Duggleby,J. Am. Chem. Soc., 87, 1541 (1965).

    Google Scholar 

  4. M. H. Abraham,J. Chem. Soc., Chem. Comm., 1307 (1969).

  5. M. J. Blandamer, J. Burgess, R. Sherry and R. I. Haines,J. Chem. Soc., Chem. Comm., 353 (1980).

  6. See,e.g. J. Burgess,J. Chem. Soc. A, 1085 (1968); 1899 (1969); 2351 (1970); M. J. Blandamer, J. Burgess, S. J. Hamshere and F. M. Mekhail,Transition Met. Chem., 4, 77 (1979); and refs. therein.

    Google Scholar 

  7. M. J. Blandamer, J. Burgess, N. V. Reed and P. Wellings,J. Inorg. Nucl. Chem., 43, 3245 (1981).

    Google Scholar 

  8. M. J. Blandamer, J. Burgess, J. G. Chambers, R. I. Haines and H. E. Marshall,J. Chem. Soc., Dalton Trans., 165 (1977).

  9. M. J. Blandamer, J. Burgess and J. G. Chambers,J. Chem. Soc., Dalton Trans., 606 (1976); M. J. Blandamer, J. Burgess and A. J. Duffield,ibid., 1 (1980).

  10. G. Nord and T. Pizzino,J. Chem. Soc., Chem. Comm., 1633 (1970).

  11. A. A. Schilt,J. Am. Chem. Soc., 82, 3000 (1960).

    Google Scholar 

  12. R. Farina, R. Hogg and R. G. Wilkins,Inorg. Chem., 7, 170 (1968).

    Google Scholar 

  13. F. Basolo and F. P. Dwyer,J. Am. Chem. Soc., 76, 1454 (1954).

    Google Scholar 

  14. A. O. Adeniran, G. J. Baker, G. J. Bennett, M. J. Blandamer, J. Burgess, N. K. Dhammi and P. P. Duce,Transition Met. Chem., 7, 183 (1982).

    Google Scholar 

  15. J. Burgess, I. Haigh and R. D. Peacock,J. Chem. Soc., Dalton Trans., 1062 (1974).

  16. D. W. Margerum and L. P. Morgenthaler,J. Am. Chem. Soc., 84, 706 (1962).

    Google Scholar 

  17. J. Burgess and R. H. Prince,J. Chem. Soc., 4697 (1965).

  18. J. Burgess,Inorg. Chim. Acta, 5, 133 (1971).

    Google Scholar 

  19. R. D. Gillard, C. T. Hughes and P. A. Williams,Transition Met. Chem., 1, 51 (1976).

    Google Scholar 

  20. R. D. Gillard and P. A. Williams,Transition Met. Chem., 2, 247 (1977); J. Burgess and R. I. Haines, 1447 (1978).

    Google Scholar 

  21. R. D. Gillard,Inorg. Chim. Acta, 11, L21 (1974);Coord. Chem. Rev., 16, 67 (1975).

    Google Scholar 

  22. J.-M. Lucie, D. R. Stranks and J. Burgess,J. Chem. Soc., Dalton Trans., 245 (1975).

  23. E.g. R. D. Gillard and P. A. Williams,Transition Met. Chem., 2, 14 (1977); R. D. Gillard, L. A. P. Kane-Maguire and P. A. Williams,Transition Met. Chem., 2, 47 (1977).

    Google Scholar 

  24. F. Franks and D. J. G. Ives,Quart. Rev. Chem. Soc., 20, 1 (1966).

    Google Scholar 

  25. G. A. Krestov and V. I. Klopov,Zh. Strukt. Khim., 5, 829 (1964).

    Google Scholar 

  26. B. G. Cox,A. Rep. Chem. Soc., 70, 249 (1973).

    Google Scholar 

  27. M. H. Abraham, personal communication.

  28. F. Franks and D. J. G. Ives,Q. Rev. Chem. Soc., 20, 1 (1966); and refs. therein.

    Google Scholar 

  29. M. Bobtelsky and R. D. Larisch,J. Chem. Soc., 3612 (1950).

  30. M. J. Blandamer, J. Burgess, J. G. Chambers and A. J. Duffield,Transition Met. Chem., 6, 156 (1981).

    Google Scholar 

  31. J. Burgess, K. Payne and R. Sherry, unpublished observation.

  32. E. R. Gardner, F. M. Mekhail and J. Burgess,Internat J. Chem. Kinetics, 6, 133 (1974); J. Burgess and G. M. Burton.Revista Latinoamer. Quim., 11, 107 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blandamer, M.J., Burgess, J., Digman, T. et al. Initial state and transition state contributions to solvent effects on activation enthalpies for substitution reactions of tris(1,10-phenanthroline)iron(II) in aqueous methanol. Transition Met Chem 8, 148–152 (1983). https://doi.org/10.1007/BF00956021

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00956021

Keywords

Navigation