Skip to main content
Log in

The effect of fluorine on phase relationships in the system KAlSiO4-Mg2SiO4-SiO2 at 28 kbar and the solution mechanism of fluorine in silicate melts

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Phase relationships in the system kalsilite-forsterite-quartz with fluorine added by direct substitution for oxygen were examined at 28 kb. A large liquidus field for fluorphlogopite exists with approx. 4 wt% F added to the system and the thermal stability of phlogopite is increased by ∼300° C relative to the water saturated system. Fluorine expands the phase volume of enstatite relative to forsterite so that the peritectic point PHL+EN+FO+L, a model for melting of a phlogopite harzburgite, lies in the silica-undersaturated field. Experimental phlogopites have excess Si which correlates with F content and are Al-deficient. The high Si contents indicate solid solution with an end member intermediate between tri- and di-octahedral micas. Glasses with compositions analogous to partial melts from phlogopite harzburgite were examined by infrared spectroscopy in the mid- and far-IR regions. Results show that fluorine polymerises the melt by bonding with all the network modifying cations K, Mg and Al. At higher F contents, but still less than 1 wt%, tetrahedral KAlO2-groups are complexed by fluorine and removed from the aluminosilicate network simultaneously polymerising and increasing the Si/(Si+Al) ratio of the network. However, when HF rather than F is present, the overall effect will be to depolymerise melts due to the effect of OH released by dissolution of HF. The presence of abundant Si-F bonds is considered unlikely even in silica-rich magmas: the viscosity decrease characteristic of fluorine-bearing melts can be attributed to the formation of fluoride complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allmann R (1971) Fluorine. In: Wedepohl KH (ed) Handbook of Geochemistry Section 9A, 6pp

  • Aoki K, Ishikawa K, Kanisawa S (1981) Fluorine geochemistry of basaltic rocks from continental and oceanic regions and petrogenetic application. Contrib Mineral Petrol 76:53–59

    Google Scholar 

  • Bailey JC (1977) Fluorine in granitic rocks and melts: a review. Chem Geol 19:1–42

    Google Scholar 

  • Best MG, Henage LF, Adams JAS (1968) Mica peridotite, wyomingite, and associated potassic igneous rocks in northeastern Utah. Am Mineral 53:1041–1048

    Google Scholar 

  • Bottinga Y, Weill DF, Richet P (1981) Thermodynamic modeling of silicate melts. In: RC Newton, A Navrotsky, BJ Wood (eds) Thermodynamics of minerals and melts: Adv Phys Geochem 1:207–245

  • Brey GP, Green DH (1975) The role of CO2 in the genesis of olivine melilitite. Contrib Mineral Petrol 49:93–103

    Google Scholar 

  • Buerger MJ (1948) The structural nature of the mineraliser action of fluorine and hydroxyl. Am Mineral 33:744–746

    Google Scholar 

  • Burnham CW (1975) Water and magmas: a mixing model. Geochim Cosmochim Acta 39:1077–1084

    Google Scholar 

  • Burnham CW (1979a) The importance of volatile constituents. In: HS Yoder (ed) The Evolution of the Igneous Rocks: Fiftieth Anniversary perspectives, pp 439–482. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Burnham CW (1979b) Magmas and hydrothermal fluids. In: HL Barnes (ed) Geochemistry of hydrothermal ore deposits. pp 71–136 Wiley

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to south-eastern Australia. Contrib Mineral Petrol 80:189–200

    Google Scholar 

  • de Jong BHWS, Brown GE (1980) Polymerisation of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions — I. Electronic structure of H6Si2O7, H6SiAlO 7 , and H6Al2O 2−7 . Geochim Cosmochim Acta 44:491–511

    Google Scholar 

  • Dingwell DB, Mysen BO (1985) The effect of water and fluorine on the viscosity of albite melt at high pressure: a preliminary investigation. Earth Planet Sci Lett 74:266–274

    Google Scholar 

  • Dingwell DB, Scarfe CM, Cronin DJ (1985) The effect of fluorine on viscosities in the system Na2O-Al2O3-SiO2: implications for phonolites, trachytes and rhyolites. Am Mineral 70:80–87

    Google Scholar 

  • Dupree E, Pettifer RF (1984) Determination of the Si-O-Si bond angle distribution in vitreous silica by magic angle spinning NMR. Nature 308:523–525

    Google Scholar 

  • Eggler DH (1974) Effect of CO2 on the melting of peridotite. Car-negie Inst Washington Yearb 73:215–224

    Google Scholar 

  • Eggler DH, Rosenhauer M (1978) Carbon dioxide in silicate melts, II, Solubilities of CO2 and H2O in CaMgSi2O6 (diopside) liquids and vapors at pressures to 40 kb. Am J Science 278:64–94

    Google Scholar 

  • Ferraro JR, Manghnani MH (1972) Infrared absorption spectra of sodium silicate glasses at high pressures. J Appl Phys 43:4595–4599

    Google Scholar 

  • Furukawa T, Fox KE, White WB (1981) Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses. J Chem Phys 75:3226–3237

    Google Scholar 

  • Gallo F, Giametti F, Venturelli G, Vernia L (1984) The kamafugitic rocks of San Venanzo and Cupaello, central Italy. N Jahrb Mineral Mh 5:198–210

    Google Scholar 

  • Glyuk DS, Anfilogov VN (1973) Phase equilibria in the system granite-H2O-HF at a pressure of 1000 kg/cm2. Geochem Int 10:321–325

    Google Scholar 

  • Green DH, Liebermann RC (1976) Phase equilibria and elastic properties of a pyrolite model for the oceanic upper mantle. Tectonophysics 32:61–92

    Google Scholar 

  • Green TH (1981) Synthetic high-pressure micas compositionally intermediate between the dioctahedral and trioctahedral mica series. Contrib Mineral Petrol 78:452–458

    Google Scholar 

  • Hazen RM, Finger LW, Velde D (1981) Crystal structure of a silica- and alkali-rich trioctahedral mica. Am Mineral 66:586–591

    Google Scholar 

  • Holloway JR, Ford CE (1975) Fluid absent melting of the fluorhydroxy amphibole pargasite to 35 kilobars. Earth Planet Sci Lett 25:44–48

    Google Scholar 

  • Ito H, Yanagase T, Suginohara Y, Miyazaki N (1967) Studies on the structure of molten fluoride-silicate systems by infrared absorption spectra. Chem Abs 67:68972g from Nippon Kinzoku Gakkaishi 31:290–295

    Google Scholar 

  • Jaques AL, Lewis JD, Smith CB, Gregory GP, Ferguson J, Chappell BW, McCulloch MT (1984) The diamond bearing ultrapotassic (lamproitic) rocks of the West Kimberley region, Western Australia. In: Kornprobst J (ed) Kimberlites I:Kimberlites and related rocks. p 225–254

  • Kogarko LN (1967) Lamination area in melts of the system Si, Al, Na//O, F. Dokl Akad Nauk Earth Sci See 176:203–205

    Google Scholar 

  • Kogarko LN (1974) Role of volatiles. In: H Sorensen (ed) The alkaline rocks, pp 474–487 Wiley, New York

    Google Scholar 

  • Kogarko LN, Krigman LD (1973) Structural position of fluorinein silicate melts (according to melting curves). Geochem Int 10:34–40

    Google Scholar 

  • Kogarko LN, Ryabchikov ID (1978) Volatile components in magmatic processes. Geochem Int 15:9–32

    Google Scholar 

  • Kogarko LN, Krigman LD, Sharudilo NS (1968) Experimental investigations of the effect of alkalinity of silicate melts on the separation of fluorine into the gas phase. Geochem Int 5:782–790

    Google Scholar 

  • Kovach JJ, Hiser AL, Karr C (1975) Far-infrared spectroscopy of minerals. In: C Karr (ed) Infrared and Raman spectroscopy of lunar and terrestrial minerals. p 231–254 Academic Press, London, New York

    Google Scholar 

  • Kovalenko NI (1977) The reactions between granite and aqueous hydrofluoric acid in relation to the origin of fluorine-bearing granites. Geochem Int 14:108–118

    Google Scholar 

  • Kozakevitch P (1954) Viscosity of blast furnace slags. Rev Metall Mem Sci 51:569–587

    Google Scholar 

  • Kumar D, Ward RG, Williams DJ (1961) Effect of fluorides on silicates and phosphates. Disc Faraday Soc 32:147–154

    Google Scholar 

  • Kumar D, Ward RG, Williams DJ (1965) Infrared absorption of some solid silicates and phosphates with and without fluoride additions. Trans Faraday Soc 61:1850–1857

    Google Scholar 

  • Kushiro I (1972) Effect of water on the compositions of magmas formed at high pressures. J Petrol 13:311–334

    Google Scholar 

  • Kushiro I (1975) On the nature of silicate melt and its significance in magma genesis: regularities in the shift of the liquidus boundaries involving olivine, pyroxene and silica minerals. Am J Sci 275:411–431

    Google Scholar 

  • Laughlin RB, Joannopoulos JD (1977) Phonons in amorphous silica. Phys Rev B 16:2942–2952

    Google Scholar 

  • Luth WC (1967) Studies in the system KAlSiO4-Mg2SiO4-SiO2-H2O: I, Inferred phase relations and petrologic applications. J Petrol 8:372–416

    Google Scholar 

  • Manning DAC (1981) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib Mineral Petrol 76:206–215

    Google Scholar 

  • Manning DAC, Hamilton DL, Henderson CMB, Dempsey MJ (1980) The probable occurrence of interstitial Al in hydrous, F-bearing and F-free aluminosilicate melts. Contrib Mineral Petrol 75:257–262

    Google Scholar 

  • McCauley JW, Newnham RE, Gibbs GV (1973) Crystal structure analysis of synthetic fluorphlogopite. Am Mineral 58:249–254

    Google Scholar 

  • Mitchell A (1967) Reactions of calcium silicates in solution in liquid calcium fluoride. Trans Faraday Soc 63:1408–1417

    Google Scholar 

  • Munoz JL, Eugster HP (1969) Experimental control of fluorine reactions in hydrothermal systems. Am Mineral 54:943–959

    Google Scholar 

  • Mysen BO (1977) The solubility of H2O and CO2 under predicted magma genesis conditions and some petrological and geophysical implications. Rev Geophys Space Phys 15:351–361

    Google Scholar 

  • Mysen BO, Virgo D (1985) Interaction between fluorine and silica in quenched melts on the joins SiO2-AlF3 and SiO2-NaF determined by Raman spectroscopy. Phys Chem Minerals 12:77–85

    Google Scholar 

  • Mysen BO, Virgo D, Seifert FA (1982) The structure of silicate melts: implications for chemical and physical properties of natural magmas. Rev Geophys Space Phys 20:353–383

    Google Scholar 

  • Palache C, Berman H, Frondel C (1951) Dana's system of mineralogy II pp 103–104 Wiley, New York

    Google Scholar 

  • Ramberg H (1952) Chemical bonds and distribution of cations in silicates. J Geol 60:331–355

    Google Scholar 

  • Rao KJ, Elliott SR (1981) Characteristic vibrations of cations in glasses. J Non-Cryst Solids 46:371–378

    Google Scholar 

  • Schilling J-G, Bergeron MB, Evans R (1980) Halogens in the mantle beneath the North Atlantic. Phil Trans R Soc London A 297:147–178

    Google Scholar 

  • Seifert F, Schreyer W (1971) Synthesis and stability of micas in the system K2O-MgO-SiO2-H2O and their relations to phlogopite. Contrib Mineral Petrol 30:196–215

    Google Scholar 

  • Seifert F, Mysen BO, Virgo D (1981) Structural similarity of glasses and melts relevant to petrological processes. Geochim Cosmochim Acta 45:1879–1884

    Google Scholar 

  • Seifert F, Mysen BO, Virgo D (1982) Three-dimensional network melt structure in the systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4. Am Mineral 67:696–717

    Google Scholar 

  • Sekine T, Wyllie PJ (1982) Phase relationships in the system KAlSiO4-Mg2SiO4-SiO2-H2O as a model for hybridisation between hydrous siliceous melts and peridotite. Contrib Mineral Petrol 79:368–374

    Google Scholar 

  • Shell HR, Ivey KH (1969) Fluorine micas. US Bur Mines Bull 647:291pp

  • Stolper EM (1982) The speciation of water in silicate melts. Geochim Cosmochim Acta 46:2609–2620

    Google Scholar 

  • Tarte P (1965) The determination of cation co-ordination in glasses by infra-red spectroscopy. In: JA Prins (ed) Physics of noncrystalline solids. pp 549–565 Wiley, New York

    Google Scholar 

  • Tarte P (1967) Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim Acta 23A: 2127–2143

    Google Scholar 

  • Taylor M, Brown GE, Fenn PM (1980) Structure of silicate mineral glasses III, NaAlSi3O8 supercooled liquid at 805° C and the effects of thermal history. Geochim Cosmochim Acta 44:109–119

    Google Scholar 

  • Taylor WR (1985) The role of C-O-H fluids in upper mantle processes: a theoretical, experimental and spectroscopic study. Ph.D thesis, University of Tasmania, Hobart

    Google Scholar 

  • Tsunawaki Y, Iwamoto N, Hattori T, Mitsuishi A (1981) Analysis of CaO-SiO2 and CaO-SiO2-CaF2 glasses by Raman spectroscopy. J Non-Cryst Solids 44:369–378

    Google Scholar 

  • Velde D (1979) Trioctahedral micas in melilite-bearing eruptive rocks. Carnegie Inst Washington Yearb 78:468–475

    Google Scholar 

  • White WB (1975) Structural interpretation of lunar and terrestrial minerals by Raman spectroscopy. In: C Karr (ed) Infrared and Raman spectroscopy of lunar and terrestrial minerals. p 325–358 Academic Press, London New York

    Google Scholar 

  • Windom KE, Boettcher AL (1981) Phase relations for the joins jadeite-enstatite and jadeite-forsterite at 28 kb and their bearing on basalt genesis. Am J Sci 281:335–351

    Google Scholar 

  • Wyllie PJ, Tuttle OF (1961) Experimental investigation of silicate systems containing two volatile components. Part II. The effects of NH3 and HF in addition to H2O on the melting temperatures of albite and granite. Am J Sci 259:128–143

    Google Scholar 

  • Yoder HS, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J Petrol 3:342–532

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foley, S.F., Taylor, W.R. & Green, D.H. The effect of fluorine on phase relationships in the system KAlSiO4-Mg2SiO4-SiO2 at 28 kbar and the solution mechanism of fluorine in silicate melts. Contr. Mineral. and Petrol. 93, 46–55 (1986). https://doi.org/10.1007/BF00963584

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00963584

Keywords

Navigation