Skip to main content
Log in

Distribution of choline acetyltransferase, acetylcholinesterase, muscarinic receptor binding, and choline uptake in discrete areas of the rat medulla oblongata

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Quantitative measurements were made of choline acetyltransferase (CAT) activity, acetylcholinesterase (AChE) acitivity and cholinergic muscarinic receptor binding ([3H]QNB) in eight areas of a cross-section of the rat medulla oblongata. A fourth cholinergic parameter, high-affinity choline uptake, was measured in three groups of these areas. CAT, AChE and [3H]QNB binding were found to be highest in the hypoglossal nucleus and the dorsal motor nucleus of the vagus; the lowest value was in the area which contains the inferior olive and the corticospinal tract. The distribution of AChE and CAT acitivities varied approximately 7- to 10-fold among the eight regions examined, whereas that of the muscarinic receptor varied only about 4-fold. The Na+-dependent high-affinity choline uptake varied approximately 20-fold from the region with the lowest activity (inferior olivary nucleus and corticospinal tract) to that with the highest activity (tissue areas containing the dorsal motor nucleus, hypoglossal nucleus, nucleus of the solitary tract and nucleus cuneatus). The four cholinergic parameters are statistically correlated throughout all the areas of the medulla which were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindgren, P. 1961. Localization and function of the medullary vasomotor center in intracollicularly decerebrated cats. Circ. Res. 9:250–255.

    PubMed  Google Scholar 

  2. Reis, D. J., andCuenod, M. 1965. Central neural regulation of carotid baroreceptor reflexes in the cat. Am. J. Physiol. 209:1267–1279.

    PubMed  Google Scholar 

  3. Wang, S. C., andChai, C. Y. 1967. Central Control of baroceptor reflex mechanism. Pages 117–130,in Kezdi, P. (ed.), Baroceptors and Hypertension, Pergamon Press, Oxford.

    Google Scholar 

  4. Brodal, A. 1969. Neurological Anatomy, 2nd ed., Oxford University Press, New York.

    Google Scholar 

  5. Peele, T. L. 1977. The Neuroanatomic Basis for Clinical Neurology, 3rd ed., McGraw-Hill, New York.

    Google Scholar 

  6. Jenkins, T. W. 1978. Functional Mammalian Neuroanatomy, 2nd ed., Lea and Feabiger, Philadelphia.

    Google Scholar 

  7. Todo, K., Yamamoto, T., Satomi, H., Ise, H., Takatama, H., andTakahashi, K. 1977. Origins of vagal preganglionic fibers to the sino-atrial and atrio-ventricular node regions in the cat heart as studied by the horseradish peroxidase method. Brain Res. 130:545–550.

    PubMed  Google Scholar 

  8. Coil, J. D., andNorgren, R. 1979. Cells of origin of motor axons in the sub-diaphragmatic vagus of the rat. J. Auton. Nerv. Syst. 1:203–210.

    PubMed  Google Scholar 

  9. Nosaka, S., Yamamoto, T., andYasunaga, K. 1979. Localization of vagal cardioinhibitory preganglionic neurons within rat brainstem. J. Comp. Neurol. 186:79–92.

    PubMed  Google Scholar 

  10. Dennison, S. J., Merritt, V. E., Aprison, M. H., andFelten, D. L. 1981. Redefinition of the location of the dorsal (motor) nucleus of the vagus in the rat using the HRP method. Brain Res. Bull. 6:77–81.

    PubMed  Google Scholar 

  11. Dennison, S. J., O'Connor, B. L., Aprison, M. H., Merritt, V. E., andFelten, D. L. 1981. Viscerotopic localization of preganglionic parasympathetic cell bodies or origin of the anterior and posterior subdiaphragmatic vagus nerves. J. Comp. Neurol. 197:259–269.

    PubMed  Google Scholar 

  12. Chiba, T., andKato, M. 1978. Synaptic structures and quantification of catecholaminergic axons in the nucleus tractus solitarius of the rat: Possible modulatory roles of catecholamines in baroreceptor reflexes. Brain Res. 151:323–338.

    PubMed  Google Scholar 

  13. Swanson, L. W. 1977. Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of the hypothalmus. Brain Res. 128:346–353.

    PubMed  Google Scholar 

  14. Ungerstedt, U. 1971. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand. Suppl. 367:1–48.

    Google Scholar 

  15. Swanson, L. W., andHartman, B. K. 1975. The central adrenergic system: An immunofluorescence study of the location of cell bodies and their afferent connections in the rat utilizing dopamine-β-hydroxylase as a marker. J. Comp. Neurol. 163:467–506.

    PubMed  Google Scholar 

  16. Basbaum, A. I., Clanton, C. H., andFields, H. L. 1978. Three bulbospinal pathways from the rostral medulla of the cat: An autoradiographic study of pain modulating systems. J. Comp. Neurol. 178:209–224.

    PubMed  Google Scholar 

  17. Palkovitz, M., andJacobowitz, D. M. 1974. Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain-II. Hindbrain. J. Comp. Neurol. 157:29–42.

    PubMed  Google Scholar 

  18. Sar, M., Stumpf, W. E., Miller, R. J., Chang, K. J., andCuatrescasas, P. 1978. Immunohistochemical localization of enkaphalin in rat brain and spinal cord. J. Comp. Neurol. 182:17–38.

    PubMed  Google Scholar 

  19. Feldberg, W., andKreyer, O. 1933. Das auftreten eines azetylcholinartigen stoffes in herzvenenblut von warmblutern bei beizung der nervi vagi. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 172:170–193.

    Google Scholar 

  20. Gottesfeld, Z., andFonnum, F. 1977. Transmitter synthesizing enzymes in the hypoglossal nucleus and cerebellum—effect of acetylpyridine and surgical lesions. J. Neurochem. 28:237–239.

    PubMed  Google Scholar 

  21. Altmann, H., Bruggencate, G., andTen Sonnhof, U. 1972. Differential strength of action of glycine and GABA in hypoglossus nucleus. Pflugers Arch. Gen. Physiol. 331:90–94.

    Google Scholar 

  22. Kobayshi, R. M., Palkovitz, M., Hruska, R. E., Rothschild, R., andYamamura, H. I. 1978. Regional distribution of muscarinic cholinergic receptors in rat brain. Brain Res. 154:13–23.

    PubMed  Google Scholar 

  23. Rotter, A., Birdsall, N. J. M., Brugen, A. S. V., Field, P. M., andRaisman, G., 1977. Axotomy causes loss of muscarinic receptors and loss of synaptic contacts in the hypoglossal nucleus. Nature 266:734–735.

    PubMed  Google Scholar 

  24. Kobayshi, R. M., Brownstein, M., Saavedra, J. M., andPalkovitz, M. 1975. Choline acetyltransferase content in discrete regions of the rat brain stem. J. Neurochem. 24:637–640.

    PubMed  Google Scholar 

  25. Zigmond, R. E., andBen-Ari, Y. 1976. A simple method for the serial sectioning of fresh brain and removal of identifiable nuclei from stained sections for biochemical analysis. J. Neurochem. 26:1285–1287.

    PubMed  Google Scholar 

  26. Fonnum, F. 1969. Radiochemical microassays for the determination of choline acetyltransferase and acetylcholinesterase activities. Biochem. J. 115:465–472.

    PubMed  Google Scholar 

  27. Simon, J. R., Atweh, S., andKuhar, M. J. 1976. Sodium dependent high affinity choline uptake: A regulatory step in the synthesis of acetylcholine. J. Neurochem. 26:909–922.

    PubMed  Google Scholar 

  28. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin-phenol reagent, J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  29. Aprison, M. H., andWerman, R. 1968. A combined neurochemical and neurophysiological approach to the identification of central nervous system neurotransmitters. Pages 143–174,in Ehrenpreis, S. andSolnitzky, O. C. (eds.), Neurosciences Research, Vol. 1, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, J.R., Oderfeld-Nowak, B., Felten, D.L. et al. Distribution of choline acetyltransferase, acetylcholinesterase, muscarinic receptor binding, and choline uptake in discrete areas of the rat medulla oblongata. Neurochem Res 6, 497–505 (1981). https://doi.org/10.1007/BF00964389

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964389

Keywords

Navigation