Skip to main content
Log in

A protein-free diet changes synaptosomal membrane fluidity and tyrosine and glutamate transport

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Synaptosomes were isolated from cerebrums of rats fed standard (20% protein) or protein-free diets for 30 days. Arrhenius plots of their (Na+/K+)ATPase activities revealed a transition temperature of 25.5°C for control rats and 23.4°C for rats on protein-free diet, indicating that the latter increases synaptosomal membrane fluidity. The only change observed in the composition of the synaptosomal membranes was a 26% decrease of sialic acid. In synaptosomes from rats on protein-free diet the uptake of tyrosine was slightly reduced while that of glutamate was not affected. However, the exit of glutamate was reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morgane, P. J., Miller, M., Kemper, T., Stern, W., Forbes, W., Hall, R. Bronzino, J., Kissane, J., Hawrylewicz, E., and Resnick, O. 1978. The effects of protein malnutrition on the developing central nervous system in the rat. Neurosci. Biobehav. Rev. 2:137–230.

    Google Scholar 

  2. Houseman, K. C., and de Villiers, J. F. K. (1987) Computed tomography in severe protein energy malnutrition. Arch. Dis. Child62, 589–592.

    Google Scholar 

  3. Austin, K. B., Bronzino, J., and Morgane, P. J. (1986) Prenatal protein malnutrition affects synaptic potentiation in the dentate gyrus of rats in adulthood. Dev. Brain Res.29, 267–273.

    Google Scholar 

  4. Wurtman, R. J. (1979) When-and why-should nutritional state control neurotransmitter synthesis? J. Neural Trans. Suppl. 15, 69–79.

    Google Scholar 

  5. Wurtman, R. J., Hefti, F., and Melamed, E. (1981) Precursor control of neurotransmitter synthesis. Pharmacol. Rev.32, 315–335.

    Google Scholar 

  6. Gibson, C. J., and Wurtman, R. J. (1978) Physiological control of brain norepinephrine synthesis by brain tyrosine concentration. Life Sci.22, 1399–1406.

    Google Scholar 

  7. Gustafson, J. M., Dodds, S. J., Burgus, R. C., and Mercer, L. P. (1986) Prediction of brain and serum free amino acid profiles in rats fed graded levels of protein. J. Nutr.116, 1667–1681.

    Google Scholar 

  8. Fernstrom, J. D., and Wurtman, R. J. (1972) Brain serotonin content: Physiological regulation by plasma neutral amino acids. Science178, 414–416.

    Google Scholar 

  9. Wurtman, R. J., and Fernstrom, J. D. (1976) Control of brain neurotransmitter synthesis by precursor availability and nutritional state. Biochem. Pharmacol. 25:1691–1696.

    Google Scholar 

  10. Berra, B., Lindi, C. Omodeo-Sale, F., Beltrame, D., and Cantone, A. 1981 Effect of maternal diet on ganglioside distribution in fetal rat brain. J. Nutr. 111:1980–1984.

    Google Scholar 

  11. Vaswani, K. K. and Sharma, M. (1985) Effect of neonatal undernutrition on rat brain gangliosides. Int. J. Vit. Nutr. Res.55, 323–329.

    Google Scholar 

  12. Merat, A., and Dickerson, J. W. T. (1974) The effect of the severity and timing of malnutrition on brain gangliosides in the rat. Biol. Neonate25, 158–170.

    Google Scholar 

  13. Cotman, C. W. (1974) Isolation of synaptosomal and synaptic plasma membrane fractions. Methods in Enzymology, vol XXXI, 445–452 Academic Press, New York.

    Google Scholar 

  14. Work, T. S., and Work, E. eds. (1972) General analytical procedures. Laboratory Techniques in Biochemistry and Molecular Biology, vol 3, pp 359. North Holland Publishing Co. Amsterdam.

    Google Scholar 

  15. Ames, B. N. (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods in Enzymology, vol VIII, 115–118 Academic Press, New York.

    Google Scholar 

  16. Kopaczyk, K. C. (1967) Preparation and properties of the heart mitochondrial electron transporting particles (inner membrane) Methods in Enzymology, vol X, 253–258 Academic Press, New York

    Google Scholar 

  17. Spiro, R. G. (1966) Analysis of sugar found in glycoproteins. Methods in Enzymology, vol VIII, 3–26 Academic Press, New York.

    Google Scholar 

  18. Entenman, C. (1957) General procedures for separating lipid components of tissue. Methods in Enzymology, vol III, 310–311 Academic Press, New York.

    Google Scholar 

  19. Whittaker, M. 1984. Cholinesterases. Methods of Enzymatic Analysis, Pages 52–63,in Bergmeyer, H. U., (ed.) vol IV, Verlag Chemie, Weinheim.

    Google Scholar 

  20. Rorive, G. and Kleinzeller, A. (1974) Ca+-activated ATPase from renal tubular cells. Methods in Enzymology, vol XXXII, 303–306 Academic Press, New York.

    Google Scholar 

  21. Aronson, N. N. Jr. and Touster, O. (1974) Isolation of rat liver plasma membrane fragments in isotonic sucrose. Methods in Enzymology, vol XXXI, 90–102 Academic Press, New York.

    Google Scholar 

  22. Jorgensen, P. L. (1974) Isolation of (Na+/K+)ATPase. Methods in Enzymology, vol XXXII, 277–290 Academic Press, New York.

    Google Scholar 

  23. Aragón, M. C., Giménez, C., Mayor, F. Jr., Marvizón, J. G., and Valdivieso, F. (1981) Tyrosine transport by membrane vesicles isolated from rat brain. Biochim. Biophys. Acta646, 465–470.

    Google Scholar 

  24. Cabezas, J. A., and Calvo, P. (1984) Gangliosidos. Investigación y Ciencia,94, 86–95.

    Google Scholar 

  25. Korpi, Jr (1982) Amino acid transport, Pages 311–337,in Laitha, A., (ed.), Handbook of Neurochemistry 2nd edition, Vol 5, Plenum Press, New York.

    Google Scholar 

  26. Peters, J. C., and Harper, A. E. (1987) Acute effects of dietary protein on food intake, tissue amino acids, and brain serotonin. Am. J. Physiol.252, R902-R914.

    Google Scholar 

  27. Johnston, J. L., and Balachandran, A. V. (1987) Effects of dietary protein, energy and tyrosine on central and peripheral norepinephrine turnover in mice. J. Nutr.117, 2046–2053.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felipo, V., Miñana, MD. & Grisolía, S. A protein-free diet changes synaptosomal membrane fluidity and tyrosine and glutamate transport. Neurochem Res 14, 431–435 (1989). https://doi.org/10.1007/BF00964857

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964857

Key Words

Navigation