Skip to main content
Log in

Characterization of an ATP diphosphohydrolase (EC 3.6.1.5) in synaptosomes from cerebral cortex of adult rats

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Data from the literature have demonstrated that synaptosomal preparations from various sources can hydrolyze externally added ATP. Various authors characterized this activity as an ecto-ATPase. In the present report, we demonstrate that synaptosomal preparations obtained from the cerebral cortex of rats show ATPase activity that could not be dissociated from ADPase activity, suggesting that an ATP-diphosphohydrolase is involved in ATP and ADP hydrolysis. Furthermore, the ATP and ADP hydrolysis could not be attributed to associations of enzymes that could mimic an ATP-diphosphohydrolase because none of the following activities were detected in our assay conditions inorganic pyrophosphatase, adenylate kinase, or nonspecific phosphatases. A possible association between an ATPase and an ADPase was excluded on the basis of both the kinetics and much additional data on inhibitors, ion dependence, pH, etc. The present results demonstrate that in synaptosomal preparations from cerebral cortex an ATP-diphosphohydrolase is involved, at least in part, in ATP and ADP hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCCD:

dicyclohexylcarboiimide

EDTA:

ethylenediaminetetraacetic acid

HEPES:

N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid

Pi:

inorganic phosphate

ATP:

diphosphohydrolase, Apyrase (EC 3.6.1.5)

ATPase:

ATP phosphohydrolase (EC 3.6.1.3) 5′-nucleotidase (EC 3.1.3.5) Hexokinase (EC 2.7.1.1) Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) Adenylate kinase (EC 2.7.4.3) Inorganic pyrophosphatase (EC 3.6.1.1)

ATP:

pyrophosphohydrolase (EC 3.6.1.8)

LDH:

lactate dehydrogenase (EC 1.1.1.27)

SDH:

succinate dehydrogenase (EC 1.3.1.6)

ACHE:

acethylcholinesterase (EC 3.1.1.7)

G-6-Pase:

glucose-6-phosphatase (EC 3.1.3.9)

NADPH:

cytoehrome c oxidoreductase (NCR) (EC 1.6.2.4)

References

  1. Snyder, S. H., 1985. Adenosine as a modulator. Ann. Rev. Neurosc. 8:103–124.

    Google Scholar 

  2. Williams, M., 1987. Purine receptors in mammalian tissues: pharmacology and functional significance. Annu. Rev. Pharmacol. Toxicol. 27:315–345.

    PubMed  Google Scholar 

  3. White, T. D. 1988. Role of adenine compounds in autonomic neurotransmission. Pharmacol. Ther. 38:129–168.

    PubMed  Google Scholar 

  4. Richardson, P. J., and Brown, S. J. 1987. ATP release from affinity-purified rat cholinergic nerve terminals. J. Neurochem. 48:622–630.

    PubMed  Google Scholar 

  5. Silinsky, E. M. 1975. On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. J. Physiol. (Lond.) 247:145–162.

    Google Scholar 

  6. Sorensen, R. G., and Mahler, H. R. 1982. Localization of endogenous ATPases at the nerve terminal. J. Bioenerg. Biomembr. 14:527–546.

    PubMed  Google Scholar 

  7. Nagy, A., Shuster, T. A., and Rosenberg, M. D. 1983. Adenosine triphosphatase activity at the external surface of chicken brain synaptosomes. J. Neurochem. 40:226–234.

    PubMed  Google Scholar 

  8. Keller, F., and Zimmerman, H. 1983. Ecto-adenosine triphosphatase activity at the cholinergic nerve endings of theTorpedo electric organ. Life Sci. 33:2635–2641.

    PubMed  Google Scholar 

  9. Nagy, A., Shuster, T. A., and Delgado-Escueta, A. V. 1986. Ecto-ATPase of mammalian synaptosomes: identification and enzymic characterization. J. Neurochem. 47:976–986.

    PubMed  Google Scholar 

  10. Grondal, E. M. J., and Zimmerman, H. 1986. Ectonucleotidase activities associated with cholinergic synaptossomes isolated fromTorpedo electric organ. J. Neurochem. 47:871–881.

    PubMed  Google Scholar 

  11. Mellman, I., Fuchs, R., and Helenius, A. 1986. Acidification of the endocytic exocytic pathways. Annu. Rev. Biochem. 55:663–700.

    PubMed  Google Scholar 

  12. Pullman, M. E., Penefsky, H. S., Datta, A., and Racker, E. 1960. Partial resolution of the enzymes catalyzing oxidative phosphorylation. J. Biol. Chem. 235:3322–3329.

    PubMed  Google Scholar 

  13. Schadeck, R. J. G., Sarkis, J. J. F., Dias, R. D., Araujo, H. M. M., and Souza, D. O. G. 1989. Synaptosomal apyrase in the hypothalamus of adult rats. Brazilian J. Med. Biol. Res. 22:303–314.

    Google Scholar 

  14. Sarkis, J. J. F., and Saltó, C. 1991. Characterization of a synaptosomal ATP diphosphohydrolase from the electric organ ofTorpedo marmorata. Brain Res. Bull. “IN PRESS”

  15. Richardson, P. J., Brown, S. J., Bayles, E. M., and Luzio, J. P. 1987. Ectoenzymes control adenosine modulation of immunoisolated cholinergic synapses. Nature. 327:232–234.

    PubMed  Google Scholar 

  16. Brown, S. J. 1988. Adenosine and ATP: presynaptic effects at the cholinergic nerve terminal. Biochem. Soc. Trans. 16:442–443.

    PubMed  Google Scholar 

  17. Nagy, A., and Delgado-Escueta, A. V. 1984. Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J. Neurochem. 43:1114–1123.

    PubMed  Google Scholar 

  18. Lanzetta, P. A., Alvarez, L. J., Reinach, P. S., and Candia, O. A. 1979. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100:95–97.

    PubMed  Google Scholar 

  19. Whitaker, J. F. 1969. A general colorimetric procedure for the estimation of enzymes which are linked to the NADH-NAD+ system. Clin. Chim. Acta. 24:23–37.

    PubMed  Google Scholar 

  20. Ellman, G. L., Courtney, K. D., Andres, V. Jr. and Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    PubMed  Google Scholar 

  21. Hubscher, G., and West, G. R. 1965. Specific assays of some phosphatases in subcellular fraction of small intestinal mucosa. Nature 205:99–780.

    PubMed  Google Scholar 

  22. Booth, R. F. G., and Clark, J. B. 1978. A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem. J. 176:365–370.

    PubMed  Google Scholar 

  23. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    PubMed  Google Scholar 

  24. Lienhard, G. E., and Secemski, I. I. 1973. P1,p5-Di(adenosine-5′)pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase. J. Biol. Chem. 248:1121–1123.

    PubMed  Google Scholar 

  25. Russel, P. J., Horenstein, J. M., Goins, L., Jones, D., and Laver, M. 1974. Adenylate kinase in human tissues. J. Biol. Chem. 249:1874–1879.

    PubMed  Google Scholar 

  26. Dixon, M., and Webb, E. C. 1979. Enzymes-3rd edn. Pages 73–74. Academic Press, New York.

    Google Scholar 

  27. Bowman, B. J., Mainzer, S. E., Allen, K. E., and Slayman, C. W. 1978. Effects of inhibitors on the plasma membrane and mitochondrial adenosine triphosphatases ofNeurospora crassa. Biochim. Biophys. Acta. 512:13–28.

    PubMed  Google Scholar 

  28. Knowles, A. F., Isler, R. E., and Reece, J. F. 1983. The common accurrence of ATP diphosphohydrolase in mammalian plasma membranes. Biochim. Biophys. Acta 731:88–96.

    PubMed  Google Scholar 

  29. Hosie, R. J. A. 1965. The localization of adenosine triphosphaases in morphologically characterized subcellular fractions of guinea pig brain. Biochem. J. 96:404–412.

    PubMed  Google Scholar 

  30. Callaghan, O. H., and Weber, G. 1959. Kinetic studies on rabbitmuscle myokinase. Biochem. J. 73:473–485.

    PubMed  Google Scholar 

  31. Markland, F. S., and Wadkins, C. L. 1966. Adenosine triphosphate-adenosine 5′-monophosphotransferase of bovine liver mitochondria. J. Biol. Chem. 241:4124–4135.

    PubMed  Google Scholar 

  32. Kalckar, H. M. 1943. The role of myokinase in transphophorylations. II. The enzymatic action of myokinase on adenine nucleotides. J. Biol. Chem. 148:127–137.

    Google Scholar 

  33. Sarkis, J. J. F., Guimaraes, J. A., and Ribeiro, J. M. C. 1986. Salivary apyrase ofRhodnius prolixus. Biochem. J. 233:855–891.

    Google Scholar 

  34. Vara, F., and Serrano, R. 1981. Purification and characterization of a membrane-bound ATP diphosphohydrolase fromCicer arietinum (chick-pea) roots. Biochem. J. 197:637–646.

    PubMed  Google Scholar 

  35. Tognoli, L., and Marre, E. 1981. Purification and characterization of a divalent cation-activated ATP-ADPase from pea stem microsomes. Biochim. Biophys. Acta 642:1–14.

    PubMed  Google Scholar 

  36. Yagi, K., Arai, Y., Kato, N., Hirota, K., and Miura, Y. 1989. Purification of ATP diphosphohydrolase from bovine aorta microsomes. Eur. J. Biochem. 180:509–513.

    PubMed  Google Scholar 

  37. LeBel, D., Poirier, G. C., Phaneuf, S., St-Jean, P., Laliberté, J. P., and Beaudoin, R. 1980. Characterization and purification of a calcium-sensitive ATP diphosphohydrolase from pig pancreas. J. Biol. Chem. 255:1227–1233.

    PubMed  Google Scholar 

  38. Laliberte, J. F., and Beaudoin, A. R. 1983. Sequencial hydrolysis of the Y- and B- phosphates groups of ATP by the ATP diphosphohydrolase from pig pancreas. Biochim. Biophys. Acta 742:9–15.

    PubMed  Google Scholar 

  39. Johnson, M. K., and Whittaker, V. P. 1963. Lactate dehydrogenase as a cytoplasmic marker in brain. Biochem. J. 88:404–409.

    PubMed  Google Scholar 

  40. Harper, F., Lamy, F., and Calvert, R. 1978. Some properties of a Ca2+ and (or) Mg2+-requiring nucleoside di- and triphosphatase(s) associated with the membranes of rat pancreatic zymogen granules. Can. J. Biochem. 56:565–576.

    PubMed  Google Scholar 

  41. Garcia-Alonso, J., Reglero, A., and Cabezas, J. A. 1990. Purification and properties of B-N-Acetylhexosaminidase A from pig brain. Int. J. Biochem. 22:645–651.

    PubMed  Google Scholar 

  42. Nagy, A. K., Shuster, T. A., and Delgado-Escueta, A. V. 1989. Rat brain synaptosomal ATP:AMP-phosphotransferase activity. J. Neurochem. 53:1166–1172.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battastini, A.M.O., da Rocha, J.B.T., Barcellos, C.K. et al. Characterization of an ATP diphosphohydrolase (EC 3.6.1.5) in synaptosomes from cerebral cortex of adult rats. Neurochem Res 16, 1303–1310 (1991). https://doi.org/10.1007/BF00966661

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966661

Key Words

Navigation