Skip to main content
Log in

Distribution of a 375 bp repeat sequence inAllium (Alliaceae) as revealed by FISH

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Information about evolutionary relationships between species of the genusAllium is desirable in order to facilitate breeding programmes. One approach is to study the distribution of repetitive DNA sequences among species thought on taxonomic grounds, to be closely related. We have used fluorescent in-situ hybridisation (FISH) to examine seven species within sect.Cepa of the genus (A. altaicum, A. cepa, A. fistulosum, A. galanthum, A. pskemense, A. oschaninii andA. vavilovii), one species from sect.Rhizirideum (A. roylei), two species from sect.Allium (A. sativum andA. porrum) and one species from sect.Schoenoprasum (A. schoenoprasum). Each species was probed using a 375 bp repeat sequence isolated fromA. cepa (Barnes & al. 1985), which was generated and labelled by polymerase chain reaction (PCR). No signals were detected in anyAllium species not belonging to sect.Cepa with the exception ofA. roylei, whose designation in sect.Rhizirideum is now questioned. Within sect.Cepa the probe was found to hybridize to the ‘terminal’ regions of the chromosome arms of all the species examined. In addition a number of interstitial bands were detected. Use of FISH reveals a more detailed map of the location of the repeat sequences than has previously been obtained by C-banding and other staining procedures. The distribution of the terminal and interstitial sites when compared, allow us to identify three species groups namely,A. altaicum andA. fistulosum; A. cepa, A. roylei, A. oschaninii andA. vavilovii; andA. galanthum andA. pskemense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anamthawat-Jónsson, K., Heslop-Harrison, J. S., 1993: Isolation and characterization of genome-specific DNA sequences inTriticeae species. — Molec. Gen. Genet.240: 151–158.

    PubMed  Google Scholar 

  • Armstrong, S. J., 1992: Chromosome staining techniques and interspecific hybridization in the genusAllium, sectionsCepa Miller (Prokh.) andSchoenoprasum (Dumort.). — Ph.D Thesis, University of Birmingham.

  • Barnes, S. R., James, A. M., Jamieson, G., 1985: The organization, nucleotide sequence and chromosomal distribution of a satellite DNA fromAllium cepa. — Chromosoma92: 185–192.

    Google Scholar 

  • Bedbrook, J. R., Jones, J., O'Dell, M., Thompson, R. D., Flavell, R. B., 1980: A molecular description of telomeric heterochromatin inSecale species — Cell19: 545–560.

    PubMed  Google Scholar 

  • Biessmann, H., Mason, J. M., 1990: Chromosome ends inDrosophila without telomeric DNA sequences. — Proc. Natl. Acad. Sci. USA87: 1758–1761.

    PubMed  Google Scholar 

  • de Vries, J. N., 1990: Onion chromosome nomenclature and homeology relationships — workshop report. — Euphytica49: 1–3.

    Google Scholar 

  • -Jongerius, M. C., 1988: Interstitial C-bands on the chromosomes ofAllium species from sectionCeba. — Proceedings of the Fourth EUCARPIA Allium Symposium, Warwick, pp. 71–78.

  • —, 1992: Introgression of leaf blight fromAllium roylei Stearn into onion (A. cepa L.). — Euphytica62: 127–133.

    Google Scholar 

  • El-Gadi, A., Elkington, T. T., 1975: Comparison of the Giemsa C-band karyotypes and the relationships ofAllium cepa, A. fistulosum andA. galanthum. — Chromosoma51: 19–23.

    Google Scholar 

  • Hanelt, P., 1990: Taxonomy, evolution, and history. — InRabinowitch, H. D., Brewster, J. L., (Eds): Onions and allied crops.1 pp. 1–26. — Boca Raton, FL.: CRC Press.

    Google Scholar 

  • Havey, M. J., 1992: Restriction enzyme analysis of the chloroplast and nuclear 45s ribosomal DNA ofAllium sectionsCepa andPhyllodolon (Alliaceae). — Pl. Syst. Evol.183: 17–31.

    Google Scholar 

  • Inada, I., Endo, M., 1994: C-banded karyotype analysis ofAllium fistulosum andA. altaicum and their phylogenetic relationship. — J. Jap. Soc. Hort. Sci.63: 593–602.

    Google Scholar 

  • Irifune, K., Hiria, K., Zheng, J., Tanaka, R., 1995: Nucleotide sequence of a highly repeated DNA sequence and its chromosomal localization inAllium fistulosum. — Theor. Appl. Genet.90: 312–316.

    Google Scholar 

  • Jiang, J. M., Gill., B. A., 1994: New 18S. 26S ribosomal RNA gene loci: — chromosomal landmarks for the evolution of polyploid wheats., Chromosoma103: 179–185.

    PubMed  Google Scholar 

  • Jones, R. N., 1991: Cytogenetics of Alliums. — InTsuchiya, T., Gupta, P. K., (Eds): Chromosome engineering in plants, pp. 215—227.

  • Kalkman, J., 1984: Analysis of the C-band karyotype ofAllium cepa L. Standard system of nomenclature and polymorphism. — Genetica65: 141–148.

    Google Scholar 

  • Lapitan, N. L. V., Ganal, M. W., Tanksley, S. D., 1989: Somatic chromosome karyotype of tomato based on in situ hybridization of the TGR 1 satellite repeat. — Genome32: 992–998.

    Google Scholar 

  • McCollum, G. D., 1982: Experimental hybrids betweenAllium fistulosum andAllium roylei. — Bot. Gaz.143: 238–243.

    Google Scholar 

  • Pich, U., Schubert, I., 1993: Polymorphism of Legumin genes in inbred lines ofVicia faba. — Biol. Zentralbl.112: 342–350.

    Google Scholar 

  • —, 1996a: Closely relatedAllium species (Alliaceae) share a very similar satellite sequence. — Pl. Syst. Evol.202: 255–264.

    Google Scholar 

  • —, 1996b: How doAlliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? — Chromosome Res.4: 207–213.

    PubMed  Google Scholar 

  • Rayburn, A. L., Gill, B. S., 1987: Molecular analysis of the D-genome of theTriticeae. — Theor. Appl. Genet.73: 385–388.

    Google Scholar 

  • Röder, M. S., Lapitan, N. L. V., Sorrells, M. E., Tanksley, S. D., 1993: Genetic and physical mapping of barley telomeres. — Molec. Gen. Genet.238: 294–302.

    PubMed  Google Scholar 

  • van der Meer, Q. P., de Vries, J. N., 1990: An interspecific cross betweenAllium roylei Stearn andAllium cepa L., and it's backcross toA. cepa. — Euphytica47: 29–31.

    Google Scholar 

  • van Raamsdonk, L. W. D., Wietsma, W. A., de Vries, J. N., 1992: Crossing experiments inAllium L. sectionCepa. — Bot. J. Linn. Soc.109: 293–303.

    Google Scholar 

  • Smiech, M. P., Sandbrink, J. M., 1997: Introgression explains incongruence between nuclear and chloroplast DNA-based phylogenies inAllium sectionCepa. — Bot. J. Linn. Soc.123: 91–108.

    Google Scholar 

  • Vosa, C. G., 1976: Heterochromatic patterns inAllium. — Heredity36: 383–392.

    Google Scholar 

  • Wu, K. S., Tanksley, S. T., 1993: Genetic and physical mapping of telomeres and macrosatellites of rice. — Pl. Molec.22: 861–872.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, M., Armstrong, S.J., Jones, G.H. et al. Distribution of a 375 bp repeat sequence inAllium (Alliaceae) as revealed by FISH. Pl Syst Evol 217, 31–42 (1999). https://doi.org/10.1007/BF00984920

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984920

Key words

Navigation