Skip to main content
Log in

Assay of phosphodiesterase with radioactively labeled cyclic 3′,5′-AMP as substrate

  • Published:
Naunyn-Schmiedebergs Archiv für Pharmakologie Aims and scope Submit manuscript

Summary

A highly sensitive method for the determination of cyclic 3′,5′-nucleotide phosphodiesterase (PDE) is described.

  1. 1.

    It is based on the use of radioactively labeled cyclic 3′,5′-AMP as substrate and the quantitative removal of the labeled product (3H-,14C-,32P-5′-AMP or32Pi).

  2. 2.

    3H- or14C-labeled 3′,5′-AMP can be used without further additions if the labeled product remains unchanged, e.g. withpurified enzyme preparations.

  3. 3.

    Whencrude PDE-preparations, which contain varying amounts of 5′-nucleotidase or phosphatase, are used either the labeled product of the PDE-reaction may be protected from further breakdown by the addition of high concentrations of unlabeled 5′-AMP, or the reaction may be carried out with32P-labeled substrate. The latter procedure is absolutely specific for measurements of PDE activity, since32Pi, formed by a subsequent step, is also quantitatively removed by precipitation.

    The effect ofaddition of 5′- AMP to the reaction mixture and the interference of 5′-nucleotidase activity was determined in various tissues.

  4. 4.

    Examples are given for certain characteristics of crude tissue PDE, for inhibition by drugsin vitro, and for the influence of pH and Mg2+ on the inhibition of PDE. Ki-values and the type of inhibition by drugs are described for crude as well as for purified PDE, and the differences are discussed.

  5. 5.

    Estimations of PDE in homogenized samples obtained fromisolated organs (heart, coronary arteries) are described.

  6. 6.

    The use, advantages and limitations of the method are discussed as well as the possible significance of effects of drugs on this key enzyme for their pharmacodynamic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baer, H. P., Drummond, G. I., Duncan, E. L.: Formation and deamination of adenosine by cardiac muscle enzymes. Molec. Pharmacol.2, 67–76 (1966).

    Google Scholar 

  • Bellet, S., Roman, L.: Response of free fatty acids to coffee and caffeine. In: Coffein und andere Methylxanthine, pp. 165–169. Ed. by F. Heim and H. P. T. Ammon. Stuttgart: Schattauer 1969.

    Google Scholar 

  • Brodie, B. B., Davies, J. I., Hynie, S., Krishna, G., Weiss, B.: Interrelationships of catecholamines with other endocrine systems. Pharmacol. Rev.18, 273–289 (1966).

    Google Scholar 

  • Butcher, R. W., Ho, R. J., Meng, H. C., Sutherland, E. W.: Adenosine 3′,5′-monophosphate in biological materials. II. The measurement of adenosine 3′5′-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J. biol. Chem.240, 4515–4523 (1965).

    Google Scholar 

  • —, Sutherland, E. W.: Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J. biol. Chem.237, 1244–1250 (1962).

    Google Scholar 

  • Cerasi, E., Luft, R.: The effect of an adenosine-3′,5′-monophosphate diesterase inhibitor (aminophylline) on the insulin response to glucose infusion in prediabetic and diabetic subjects. Horm. Metab. Res.1, 162–168 (1969).

    Google Scholar 

  • Cheung, W. Y.: Properties of cyclic 3′,5′-nucleotide phosphodiestersae from rat brain. Biochemistry6, 1079–1087 (1967).

    Google Scholar 

  • —: Cyclic 3′,5′-nucleotide phosphodiesterase. Preparation of a partially inactive enzyme and its subsequent stimulation by snake venom. Biochim. biophys. Acta (Amst.)191, 303–315 (1969).

    Google Scholar 

  • Dixon, M.: The determination of enzyme inhibitor constants. Biochem. J.55, 170–171 (1953).

    Google Scholar 

  • Drummond, G. I., Perrott-Yee, S.: Enzymatic hydrolysis of adenosine 3′,5′-phosphoric acid. J. biol. Chem.236, 1126–1134 (1961).

    Google Scholar 

  • Dvorak, H. F., Heppel, L. A.: Metallo-enzymes released from Escherichia coli by osmotic shock. II. Evidence that 5′-nucleotidase and cyclic phosphodiesterase are zinc metallo-enzymes. J. biol. Chem.243, 2647–2653 (1968).

    Google Scholar 

  • Goodman, H. M.: Metabolic effects of imidazole in adipose tissue. Biochim. biophys. Acta (Amst.)176, 60–64 (1969).

    Google Scholar 

  • Handler, J. S., Butcher, R. W., Sutherland, E. W., Orloff, J.: The effect of vasopressin and of theophylline on the concentration of adenosine 3′,5′-phosphate in the urinary bladder of the toad. J. biol. Chem.240, 4524–4526 (1965).

    Google Scholar 

  • Honda, F., Imamura, H.: Inhibition of cyclic 3′,5′-nucleotide phosphodiesterase by phenothiazine and reserpine derivatives. Biochim. biophys. Acta (Amst.)161, 267–269 (1968).

    Google Scholar 

  • Horlington M., Watson, P. A.: Inhibition of 3′,5′-cyclic-AMP phosphodiesterase by some platelet aggregation inhibitors. Biochem. Pharmacol.19, 955–956 (1970).

    Google Scholar 

  • Kleisbauer, J. P., Triner, L., Nahas, G.: Effet des l'imidazole sur la lipolyse du tissu adipeux épididymaire de rat blanc in vitro. C. R. Soc. Biol. (Paris)162, 497–501 (1968).

    Google Scholar 

  • Krishna, G., Weis, B., Brodie, B. B.: A simple sensitive method for the assay of adenyl cyclase. J. Pharmacol. exp. Ther.163, 379–385 (1968).

    Google Scholar 

  • Kukovetz, W. R.: Kontraktilität und Phosphorylaseaktivität des Herzens bei ganglionärer Erregung nach adrenerger Blockade und unter Atropin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.243, 391–406 (1962).

    Google Scholar 

  • Kukovetz, W. R., Juan, H., Pöch, G.: Zum Mechanismus der Papaverinwirkung auf isolierte Coronargefäße. Naunyn-Schmiedebergs Arch. Pharmak.264, 262–263 (1969a).

    Google Scholar 

  • —, Pöch, G.: The action of imidazole on the effects of methylxanthines and catecholamines on cardiac contraction and phosphorylase activity. J. Pharmacol. exp. Ther.156, 514–521 (1967).

    Google Scholar 

  • — —: Zum Mechanismus der Herzwirkung von Methylxanthinen. In: Coffein und andere Methylxanthine, pp. 91–108. Edited by F. Heim and H. P. T. Ammon Stuttgart: Schattauer 1969a.

    Google Scholar 

  • — —: The action of theophylline, 2-bromo-LSD and imidazole on phospho-diesterase activity in the perfused guinea-pig heart. Fed. Proc.28, 741 (1969b).

    Google Scholar 

  • — —: Inhibition of cyclic-3′,5′-nucleotide-phosphodiesterase as a possible mode of action of papaverine and similarly acting drugs. Naunyn-Schmiedebergs Arch. Pharmak.267, 189–194 (1970).

    Google Scholar 

  • — —, Juan, H.: The role of phosphodiesterase inhibition in the mechanism of coronary dilatation by drugs. Abstracts of the Fourth International Congress on Pharmacology, p. 270. Basel: Schwabe & Co. 1969b.

    Google Scholar 

  • Levy, G. S., Skelton, C. L., Epstein, S. E.: Decreased myocardial adenyl cyclase activity in hypothyroidism. J. clin. Invest.48, 2244–2250 (1969).

    Google Scholar 

  • Lineweaver, H., Burk, D.: The determination of enzyme dissociation constants. J. Amer. chem. Soc.56, 658–666 (1934).

    Google Scholar 

  • Marquis, N. R., Becker, J. A., Vigdahl, R. L.: Platelet aggregation. III. An epinephrine induced decrease in cyclic AMP synthesis. Biochem. biophys. Res. Commun.39, 783–789 (1970).

    Google Scholar 

  • Nair, K. G.: Purification and properties of 3′,5′-cyclic nucleotide phosphodiesterase from dog heart. Biochemistry5, 150–157 (1966).

    Google Scholar 

  • Nitz, R. E., Schraven, E., Trottnow, D.: Hemmung der Phosphodiesterase aus Rattenherzen durch Intensain. Experientia (Basel)24, 334–335 (1968).

    Google Scholar 

  • Pastan, I., Katzen, R.: Activation of adenyl cyclase in thyroid homogenates by thyroid-stimulating hormone. Biochem. biophys. Res. Commun.29, 792–798 (1967).

    Google Scholar 

  • Pöch, G., Juan, H., Kukovetz, W. R.: Einfluß von herz- und gefäßwirksamen Substanzen auf die Aktivität der Phosphodiesterase. Naunyn-Schmiedebergs Arch. Pharmak.264, 293–294 (1969).

    Google Scholar 

  • —, Kukovetz, W. R.: Zum Mechanismus der Herzwirkungen von 2-Brom-LSD. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.263, 244 (1969a).

    Google Scholar 

  • — —: Die Phosphodiesteraseaktivität des Herzens unter Theophyllin, Imidazol und 2-Brom-LSD. In: Coffein und andere Methylxanthine, pp. 109–115. Ed. by F. Heim and H. P. T. Ammon. Stuttgart: Schattauer 1969b.

    Google Scholar 

  • — —: Papaverine-induced inhibition of phosphodiesterase activity in various mammalian tissues. Life Sci.10/I, 133–144 (1971).

    Google Scholar 

  • Reis, J. L.: Studies on 5′-nucleotidase and its distribution in human tissues. Biochem. J.46, 21–22 (1950).

    Google Scholar 

  • Schönhöfer, P. S., Skidmore, I. F., Krishna, G., Bourne, H. R.: Zwei einfache Methoden zur Bestimmung der cAMP Phosphodiesterase. (Biochem. Analytik 1970). Z. Analyt. Chem., (in press).

  • Schraven, E., Nitz, R. E.: Die Wirkung des Coronardilatators Carbochromen auf den 3′,5′-AMP-Stoffwechsel. Arzneimittel-Forsch. (Drug Res.)18, 396–398 (1968).

    Google Scholar 

  • Schultz, G., Senft, G., Losert, W., Sitt, R.: Biochemische Grundlagen der Diazoxid-Hyperglykämie. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.253, 372–387 (1966).

    Google Scholar 

  • Schwabe, U., Ebert, R.: Wirkung von heterocyclischen Lipolysehemmstoffen auf die Aktivität der 3′,5′-AMP-Phosphodiesterase. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.263, 251–252 (1969).

    Google Scholar 

  • —, Kerstein, E., Hasselblatt, A.: Hemmung der Lipolyse im Fettgewebe durch Methylisoxazolcarbonsäuren. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.260, 1–15 (1968).

    Google Scholar 

  • Senft, G., Munske, K., Schultz, G., Hoffmann, M.: Der Einfluß von Hydrochlorothiazid und anderen sulfonamidierten Diuretica auf die 3′,5′-AMP-Phospho-diesterase-Aktivität in der Rattenniere. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.259, 344–359 (1968).

    Google Scholar 

  • Stock, K.: Die Lipolyse als Beispiel einer durch Hormone, zyklische Nukleotide und Methylxanthine beeinflußbaren Reaktion. In: Coffein und andere Methyl-xanthine, pp. 131–151. Ed. by F. Heim and H. P. T. Ammon. Stuttgart: Schattauer 1969.

    Google Scholar 

  • Symons, R. H.:32P-3′,5′-cyclic AMP: A simple preparative procedure. Biochem. biophys. Res. Commun.38, 807–810 (1970).

    Google Scholar 

  • Triner, L., Vulliemoz, Y., Schwartz, I., Nahas, G. G.: Cyclic phosphodiesterase activity and the action of papaverine. Biochem. biophys. Res. Commun.40, 64–69 (1970).

    Google Scholar 

  • Turtle, J. R., Littleton, G. K., Kipnis, D. M.: Stimulation of insulin secretion by theophylline. Nature (Lond.)213, 727–728 (1967).

    Google Scholar 

  • Vernikos-Danellis, J., Harries, C. G.: The effect in vitro and in vivo of caffeine, theophylline, and hydrocortisone on the phosphodiesterase activity of the pituitary, median eminence, heart, and cerebral cortex of the rat. Proc. Soc. exp. Biol. (N. Y.)128, 1016–1021 (1968).

    Google Scholar 

  • Wells, H., Lloyd, W.: Hypocalcemic effect of imidazole in rats. Endocrinology83, 521–529 (1968).

    Google Scholar 

  • Zeller, W.: Der Einfluß von Coffein, Kaffee und Tee auf die Konzentration der freien Fettsäuren im Serum. In: Coffein und andere Methylxanthine, pp. 163 bis 164. Ed. by F. Heim and H. P. T. Ammon. Stuttgart: Schattauer 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The valuable technical help of Mrs. Vera Bauer is gratefully aknowledged. I am indebted to Prof. W. R. Kukovetz and to Prof. F. Hobbiger for helpful suggestions and criticism, and to Dr. R. H. Symons for a sample of32P-cyclic 3′,5′-AMP. I want to thank Dr. G. Michal for a gift of purified PDE and cyclic 3′,5′-AMP, Dr. K. G. Oldham for a research sample of14C-adenosine, and the various pharmaceutical companies for drug samples.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pöch, G. Assay of phosphodiesterase with radioactively labeled cyclic 3′,5′-AMP as substrate. Naunyn-Schmiedebergs Arch. Pharmak. 268, 272–299 (1971). https://doi.org/10.1007/BF00997262

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00997262

Key-words

Schlüsselwörter

Navigation