Skip to main content
Log in

Cardiostimulatory effects of cyclic 3′,5′-adenosine monophosphate and its acylated derivatives

  • Published:
Naunyn-Schmiedebergs Archiv für Pharmakologie Aims and scope Submit manuscript

Summary

The effects of cyclic 3′,5′-AMP and of two acylated derivatives, dibutyryl (DBA) and dihexanoyl-3′,5′-AMP (DHA) were investigated in isolated perfused hearts of guinea pigs, rats and rabbits.

In guinea pig hearts, DBA (Ca- and Na-salt) and DHA-Na in high doses (10 μmoles) produced strong and long lasting increases in the rate and amplitude of contractions, coronary flow, and moderate increases in phosphorylase activity in the majority of experiments. The positive ino- and chronotropic effects occured 3–5 min after injection of the drug, mostly in a fluctuating manner with several maxima. Theophylline augmented the effects of DBA-Na and revealed positive inotropic actions of non substituted 3′,5′-AMP.

In rat hearts, similar, but more pronounced and dose-dependent effects were observed after 1, 5 and 10 μmoles DBA-Na. Propranolol (50 μg) did not block the action of 10 μmoles DBA-Na. Non substituted 3′,5′-AMP, 5′-AMP and ATP in doses of 10 μmoles had no significant positive inotropic effects.

In rabbit hearts, DBA-Na (50 μmoles) produced moderate, non fluctuating rises in the amplitude of contraction.

The results provide evidence that under certain conditions cyclic 3′, 5′-AMP itself, like its acylated derivatives DBA and DHA, may produce strong and direct positive inotropic and chronotropic effects in the heart. These findings support the view that cyclic 3′,5′-AMP is the cellular mediator of the cardiostimulant actions of substances that increase its rate of production in the myocardial cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bieck, P., Stock, K., Westermann, E.: Wirkung von cyclischem Adenosin-3′,5′- Monophosphat (3′,5′-AMP) und seinem Dibutyrylderivat (DBA) auf Lipolyse, Glykogenolyse und Corticosteronsynthese. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.263, 387–405 (1969).

    Google Scholar 

  • Bray, G. A.: Inhibition of glucose oxidation in adipose tissue by dibutyryladeno-sine-3′,5′-phosphate. Biochem. biophys. Res. Commun.28, 621–627 (1967).

    Google Scholar 

  • Brown, H. D., Chattopadhyay, S. K., Matthews, W. S.: Glucagon stimulation of adenyl-cyclase activity of cardiac muscle. Naturwissenschaften55, 181–182 (1968).

    Google Scholar 

  • Butcher, R. W., Sutherland, E. W.: Adenosine 3′,5′-phosphate in biological materials: I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J. biol. Chem.237, 1244–1250 (1962).

    Google Scholar 

  • Cheung, W. Y., Williamson, J. R.: Kinetics of cyclic adenosine monophosphate changes in rat heart following epinephrine administration. Nature (Lond.)207, 979–981 (1965).

    Google Scholar 

  • Cornblath, M., Randle, P. J., Parmeggiani, A., Morgan, H. E.: Regulation of glycogenolysis in muscle. Effects of glucagon and anoxia on lactate production, glycogen content, and phosphorylase activity in the perfused isolated rat heart. J. biol. Chem.238, 1592–1597 (1963).

    Google Scholar 

  • Davoren, P. R., Sutherland, E. W.: The cellular location of adenyl cyclase in the pigeon erythrocyte. J. biol. Chem.238, 3016–3023 (1963).

    Google Scholar 

  • Falbriard, J.-G., Posternak, T., Sutherland, E. W.: Preparation of derivatives of adenosine 3′,5′-phosphate. Biochim. biophys. Acta (Amst.)148, 99–105 (1967).

    Google Scholar 

  • Haugaard, N., Hess, M. E.: Action of autonomic drugs on phosphorylase activity and function. Pharmacol. Rev.17, 27–69 (1965).

    Google Scholar 

  • Henion, W. F., Sutherland, E. W., Posternak, T.: Effects of derivatives of adenosine 3′,5′-phosphate on liver slices and intact animals. Biochim. biophys. Acta (Amst.)148, 106–113 (1967).

    Google Scholar 

  • Hess, M. E., Aronson, C. E., Hottenstein, D. W., Karp, J.: Effects of adrenal cortical hormones and thyroxine on phosphorylase activity in muscle. Endocrinology84, 1107–1112 (1969).

    Google Scholar 

  • Horn, R. S., Aronson, C. E., Hess, M. E., Haugaard, N.: The effect of metabolic inhibitors on the response of the perfused rat heart to epinephrine. Biochem. Pharmacol.16, 2109–2116 (1967).

    Google Scholar 

  • —, Levin, R., Haugaard, N.: The influence of oligomycin on the actions of epinephrine and theophylline upon the perfused rat heart. Biochem. Pharmacol.18, 503–509 (1969).

    Google Scholar 

  • Kakiuchi, S., Rall, T. W.: The influence of chemical agents on the accumulation of adenosine 3′,5′-phosphate in slices of rabbit cerebellum. Molec. Pharmacol.4, 367–378 (1968a).

    Google Scholar 

  • — —: Studies on adenosine 3′,5′-phosphate in rabbit cerebral cortex. Molec. Pharmacol.4, 379–388 (1968b).

    Google Scholar 

  • Kukovetz, W. R.: Kontraktilität und Phosphorylaseaktivität des Herzens bei ganglionärer Erregung nach adrenerger Blockade und unter Atropin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.243, 391–406 (1962).

    Google Scholar 

  • — Discussion to Sutherland, E. W., Butcher, R. W., Robison, G. A., Hardman, J. G.: The role of adenosine 3′,5′-monophosphate in hormone action. In: Karlson, P.: Wirkungsmechnismen der Hormone, pp. 30–31. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • —: Über die Wirkung von Dibutyryl-3′,5′-AMP am isolierten Herzen. NaunynSchmiedebergs Arch. Pharmak. exp. Path.260, 163–164 (1968).

    Google Scholar 

  • —, Pöch, G.: The action of imidazole on the effects of methylxanthines and catecholamines on cardiac contraction and phosphorylase activity. J. Pharmacol. exp. Ther.156, 514–521 (1967a).

    Google Scholar 

  • — —: Beta-adrenerge Effekte und ihr zeitlicher Verlauf unter Tetrahydropapaverolin am Langendorff-Herzen. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.256, 301–309 (1967b).

    Google Scholar 

  • Levey, G. S., Epstein, S. E.: Myocardial adenyl cyclase: Activation by thyroid hormones and evidence for two adenyl cyclase systems. J. clin. Invest.48, 1663–1669 (1969).

    Google Scholar 

  • Mayer, S. E., Moran, N. C.: Relation between pharmacologic augmentation of contractile force and the activation of myocardial glycogen phosphorylase. J. Pharmacol. exp. Ther.129, 271–281 (1960).

    Google Scholar 

  • Moore, P. F., Iorio, L. C., McManus, J. M.: Relaxation of the guinea pig tracheal chain preparation by N6-2′-O-dibutyryl-3′,5′cyclio adenosine monophosphate. J. Pharm. Pharmacol.20, 368–372 (1968).

    Google Scholar 

  • Namm, D. H., Mayer, S. E.: The role of cyclic AMP in myocardial contractility and the phosphorylase activating pathway. Pharmacologist10, 145 (1968).

    Google Scholar 

  • Pöch, G., Kukovetz, W. R.: Drug-induced release and pharmacodynamic effects of histamine in the guinea-pig heart. J. Pharmacol. exp. Ther.156, 522–527 (1967).

    Google Scholar 

  • — —: Einfluß von Theophyllin und Imidazol auf die Wirkung von Histamin am Meerschweinchenherzen. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.260, 187 (1968).

    Google Scholar 

  • Posternak, T., Sutherland, E. W., Henion, W. F.: Derivatives of cyclic 3′,5′-adenosine monophosphate. Biochim. biophys. Acta (Amst.)65, 558–560 (1962).

    Google Scholar 

  • Rasmussen, H., Tenenhouse, A.: Cyclic adenosine monophosphate, Ca++, and membranes. Proc. nat. Acad. Sci. (Wash.)59, 1364–1370 (1968).

    Google Scholar 

  • Robison, G. A., Butcher, R. W., Øye, I., Morgan, H. E., Sutherland, E. W.: The effect of epinephrine on adenosine 3′,5′-phosphate levels in the isolated perfused rat heart. Molec. Pharmacol.1, 168–177 (1965).

    Google Scholar 

  • — —, Sutherland, E. W.: Adenyl cyclase as an adrenergic receptor. Ann. N. Y. Acad. Sci.139, 703–723 (1967).

    Google Scholar 

  • Robison, G. A., Butcher, R. W., Sutherland, E. W.: Cyclic AMP. Ann. Rev. Biochem.37, 149–174 (1968).

    Google Scholar 

  • Sutherland, E. W., Butcher, R. W., Robison, G. A., Hardman, J. G.: The role of adenosine 3′,5′-monophosphate in hormone action. In: Karlson, P.: Wirkungs-mechanismen der Hormone, S. 1–32. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • —, Øye, I., Butcher, R. W.: The action of epinephrine and the role of the adenyl cyclase system in hormon action. Recent Progr. Hormone Res.21, 623–646 (1965).

    Google Scholar 

  • —, Rall, T.: The relation of adenosine-3′,5′-phosphate and phosphorylase to the actions of catecholamines and other hormones. Pharmacol. Rev.12, 265–299 (1960).

    Google Scholar 

  • —, Robison, G. A.: The role of cyclic 3′,5′-AMP in response to catecholamines and other hormones. Pharmacol. Rev.18, 145–161 (1966).

    Google Scholar 

  • — —, Butcher, R. W.: Some aspects of the biological role of adenosine 3′,5′-mono-phosphate (cyclic AMP). Circulation37, 279–306 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The excellent technical help of Mrs. Vera Bauer is gratefully acknowledged by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukovetz, W.R., Pöch, G. Cardiostimulatory effects of cyclic 3′,5′-adenosine monophosphate and its acylated derivatives. Naunyn-Schmiedebergs Arch. Pharmak. 266, 236–254 (1970). https://doi.org/10.1007/BF00997285

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00997285

Key-words

Schlüsselwörter

Navigation