Skip to main content
Log in

Collective modes, damping, and the scattering function in classical liquids

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An exact representation for the density-density response function is presented. This representation is a generalization of the result obtained in the mean field approximation and amounts to replacing the static, effective potential by one which is both wavenumber- and frequency-dependent. This potential possesses both a real and an imaginary part; the latter describes the collisional damping of collective modes. Analyticity and sum rule arguments are used to describe the basic properties of this complex potential. The formalism allows us to write an exact formula for the scattering functionS(k, ω) in which the basic unknown is the collisional damping function. Using a small portion of the recent experimental data on coherent neutron scattering in liquid argon, we are able to calculateS(k, ω) and other quantities of interest and to make comparisons with the rest of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nelkin and S. Ranganathan,Phys. Rev. 164:222 (1967).

    Google Scholar 

  2. K. S. Singwi, K. Sköld, and M. P. Tosi,Phys. Rev. Lett. 21:881 (1968);Phys. Rev. A 1:454 (1970).

    Google Scholar 

  3. J. Chihara,Progr. Theor. Phys. 41:285 (1969).

    Google Scholar 

  4. M. Nelkin,Phys. Rev. 183:349 (1969).

    Google Scholar 

  5. A. A. Vlasov,Many-Particle Theory and Its Application to Plasma, Gordon and Breach, New York (1961); L. D. Landau,J. Phys. USSR 10:25 (1946).

    Google Scholar 

  6. K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander,Phys. Rev. 176:589 (1968).

    Google Scholar 

  7. T. Schneider, R. Brout, H. Thomas, and J. Feder,Phys. Rev. Lett. 25:1423 (1970); T. Schneider,Phys. Rev. A 3:2145 (1971).

    Google Scholar 

  8. K. Sköld, J. M. Rowe, G. Ostrowski, and P. D. Randolph,Phys. Rev. A 6:1107 (1972).

    Google Scholar 

  9. K. N. Pathak and K. S. Singwi,Phys. Rev. A 2:2427 (1970).

    Google Scholar 

  10. L. P. Kadanoff and P. C. Martin,Ann. Phys. (N.Y.)24:419 (1963).

    Google Scholar 

  11. A. Rahman,Phys. Rev. Lett. 19:420 (1967); inNeutron Inelastic Scattering, International Atomic Energy Agency, Vienna (1968), Vol. 1, p. 561.

    Google Scholar 

  12. L. van Hove,Phys. Rev. 95:249 (1954).

    Google Scholar 

  13. G. Placzek,Phys. Rev. 86:377 (1952).

    Google Scholar 

  14. P. G. de Gennes,Physica 25:825 (1959).

    Google Scholar 

  15. D. Forster, P. C. Martin, and S. Yip,Phys. Rev. 170:155 (1968).

    Google Scholar 

  16. L. P. Kadanoff and G. Baym,Quantum Statistical Mechanics, W. A. Benjamin, New York (1962).

    Google Scholar 

  17. A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski,Quantum Field Theory in Statistical Physics, Prentice-Hall, Englewood Cliffs, N. J. (1963).

    Google Scholar 

  18. D. Forster and P. C. Martin,Phys. Rev. A 2:1575) (1970).

    Google Scholar 

  19. G. F. Mazenko,Phys. Rev. A 3:2121 (1971).

    Google Scholar 

  20. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions, Dover, New York (1964), Chapt. 7.

    Google Scholar 

  21. C. D. Andriesse and E. Legrand,Physica 57:191 (1972).

    Google Scholar 

  22. P. A. Egelstaff,An Introduction to the Liquid State, Academic, London (1967), p. 193.

    Google Scholar 

  23. J. K. Percus and G. J. Yevick,Phys. Rev. A 2:1526 (1970); see also J. L. Lebowitz, J. K. Percus, and J. Sykes,Phys. Rev. 188:487 (1969).

    Google Scholar 

  24. R. Zwanzig,Phys. Rev. 156:190 (1967); R. Nossal and R. Zwanzig,Phys. Rev. 157:120 (1967); R. Nossal,Phys. Rev. 166:81 (1968).

    Google Scholar 

  25. P. C. Martin, in1967 Les Houches Lectures, Gordon and Breach, New York (1968), p. 121.

    Google Scholar 

  26. D. Pines and P. Nozieres,The Theory of Quantum Liquids, W. A. Benjamin, New York (1966), Chapter 1.

    Google Scholar 

  27. C. H. Chung and S. Yip,Phys. Rev. 182:323 (1969).

    Google Scholar 

  28. N. K. Ailawadi, A. Rahman, and R. Zwanzig,Phys. Rev. A 4:1616 (1971).

    Google Scholar 

  29. A. Z. Akcasu and E. Daniels,Phys. Rev. A 2:962 (1970).

    Google Scholar 

  30. N. K. Ailawadi,Physica 49:345 (1970).

    Google Scholar 

  31. T. Gaskell,Phys. Chem. Liquids 2:237 (1971).

    Google Scholar 

  32. P. C. Martin and S. Yip,Phys. Rev. 170:151 (1968).

    Google Scholar 

  33. D. Forster, P. C. Martin, and S. Yip,Phys. Rev. 170:160 (1968).

    Google Scholar 

  34. W. C. Kerr,Phys. Rev. 174:316 (1968).

    Google Scholar 

  35. J. Hubbard and J. L. Beeby,J. Phys., C. Ser. 2,2:556 (1969).

    Google Scholar 

  36. R. Brout and P. Carruthers,Lectures on the Many-Electron Problem, Wiley-Interscience, New York (1963), p. 34.

    Google Scholar 

  37. N. N. Bogoliubov,Phys. Abh. SU 6:1, 113, 229 (1962); see also H. Wagner,Z. Physik 195:273 (1966).

    Google Scholar 

  38. N. D. Mermin,Phys. Rev. 171:272 (1968).

    Google Scholar 

  39. A. A. Kugler,Physica 50:155 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kugler, A.A. Collective modes, damping, and the scattering function in classical liquids. J Stat Phys 8, 107–153 (1973). https://doi.org/10.1007/BF01008535

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01008535

Key words

Navigation