Skip to main content
Log in

Optical design of a dual-polarization receiver for 220–280 GHz

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A 220–280 GHz dual polarization receiver has been built for the James Clerk Maxwell Telescope. Schottky diode mixers cooled to ∼15K by a closed-cycle refrigerator are used to give DSB noise temperatures of 300K and 420K in the two channels. The optical design is based on gaussian-beam optics, and is frequency independent; it allows the significant higher order gaussian modes to propagate unhindered, thus offering the prospect of very high aperture efficiency. The receiver includes a number of novel optical components, including a completely symmetric dual polarization Martin-Puplett interferometer, used as the L.O. injection diplexer; a dielectric waveplate used as an in-line variable polarization splitter; and a dual-polarization in-line tunable Fabry-Perot SSB filter. Measurements of the performance of the optical system are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.N.Ellison and R.E.Miller, “A low noise 230 GHz receiver” in International J. Infrared and Millimetre Waves, vol.8 pp 609–625, Aug.1987

  2. D.H.Martin and E.Puplett, “Polarized interferometric spectroscopy for the millimetre and submillimetre spectrum”, Infrared Phys. vol.10 pp 105–109 Mar.1970

    Google Scholar 

  3. B.N.Ellison and D.R.Vizard, “230–271 GHz cryogenic radiometer”, Electronics Letters vol.19 pp 586–587 Jul.1983

    Google Scholar 

  4. CTI model 22, CTI-Cryogenics, Waltham, MA, USA

  5. M.W.Pospieszalski, S.Weinreb, R.D.Norrod and R.Harris, “FET's and HEMT's at cryogenic temperature — their properties and use in low-noise amplifiers”, IEEE Trans. Microwave Theory Tech. vol.MTT-36 pp 552–560 Mar.1988

    Google Scholar 

  6. S.Withington, “Cryogenic GaAs FET amplifier”, Electronics Letters vol.20 pp 506–508. 1984

    Google Scholar 

  7. Millitech Corp. South Deerfield, MA, USA

  8. P.F.Goldsmith, “Quasi-optical techniques at millimetre and submillimetre wavelengths” inInfrared and Millimetre Waves vol.6, K.J.Button (ed), pp 277–343, New York, Academic, 1982

    Google Scholar 

  9. R.Padman, J.A.Murphy and R.E.Hills, “Gaussian mode analysis of Cassegrain antenna efficiency”, IEEE Trans. Antenna. Propagat. vol.AP-35 pp 1093–1103 Oct.1987

    Google Scholar 

  10. J.A.Murphy, “Distortion of a simple gaussian beam on reflection from off-axis ellipsoidal mirrors”, International J. Infrared and Millimetre Waves, vol.8 pp 1165–1187 Sep.1987

    Google Scholar 

  11. J.R.Birch, J.D.Dromey and J.Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm −1”, Infrared Physics vol.21 pp 225–228 1981

    Google Scholar 

  12. M.N.Afsar “Precision dielectric measurements of non-polar polymers in the mm-wavelength range” IEEE Trans. Microwave Theory Tech. vol.MTT-33 pp 1410–1415 Dec.1985

    Google Scholar 

  13. J.W.Archer, “Multiple mixer, cryogenic receiver for 200–350 GHz”, Rev. Sci. Instrum. vol.54 pp 1371–1376 Oct.1983

    Google Scholar 

  14. Buckby-Mears Co. Saint-Paul, Minnesota, USA

  15. J.W.Archer, “All solid-state receivers for 210–240 GHz”, IEEE Trans. Microwave Theory Tech. vol.MTT-30, pp 1247–1252 Aug.1982

    Google Scholar 

  16. Airpax digital linear transducer K92211 — North American Philips Controls Corp., Cheshire, CT, USA.

  17. J.Payne, “The NRAO Multibeam system”, in Proc. European quasi-optics workshop, N.Keen (ed.) Munich, Institut fur Hoch-Frequenz-Technik, TU Munchen, 1988

    Google Scholar 

  18. S.Silver (ed), “Microwave Antenna Theory and Design”, section 11.3. New York, Dover 1965

    Google Scholar 

  19. R.Padman, “Lenses for wideband corrugated conical horns”, Electronics Letters, vol.14 pp 311–312 Oct.1978

    Google Scholar 

  20. D.K.Waineo, “Lens design for arbitrary aperture illumination” in Proc. IEEE Antennas Propagat. Soc. Symp 1976 pp 476–479

  21. R.Padman, “Reflection and polarization properties of groooved dielectric panels” IEEE Trans. Antennas Propagat. vol.AP-26 pp 471–743 Sep.1978

    Google Scholar 

  22. D.G.Bodnar and H.L.Bassett, “Analysis of an anisotropic dielectric radome”, IEEE Trans. Antennas. Propagat. vol.AP-23 pp 841–846 Nov.1975

    Google Scholar 

  23. Rexolite 1422 — American Enka Corp., Brand Rex division, Willimatic, CT, USA

  24. Emerson and Cumming, Canton MA, USA

  25. N.R.Erickson, “A very low-noise single sideband receiver for 200–260 GHz”, IEEE Trans. Microwave Theory Tech. vol.MTT-33 pp 1179–1188 Nov.1985

    Google Scholar 

  26. W.J.Smith, “Image formation: Geometrical and Physical Optics”, in Handbook of Optics, W.G.Driscoll and W.Vaughan (eds) sect.44, pp 2–55. McGraw-Hill, NY, 1978

    Google Scholar 

  27. R.J.Wylde, “Millimetre-wave gaussian beam optics and corrugated feed horns”, Proc. Inst. Elec. Eng. vol.131 pt H. pp 258–262 1984

    Google Scholar 

  28. B.L.Ulich, “A radiometric antenna gain calibration method”, IEEE Trans. Antennas Propagat. vol.AP-25 pp 218–223 Mar.1977

    Google Scholar 

  29. F.J.Lovas, “Recommended rest frequencies for observed interstellar molecular microwave transitions — 1984 revision”, J. Phys. Chem. Ref. Data. vol.15 pp 251–303 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padman, R. Optical design of a dual-polarization receiver for 220–280 GHz. Int J Infrared Milli Waves 10, 1233–1261 (1989). https://doi.org/10.1007/BF01009251

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009251

Keywords

Navigation