Skip to main content
Log in

Stationary measures for the periodic Euler flow in two dimensions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We construct for the Euler flow in two dimensions with periodic boundary conditions the Gibbsian measures given by the energy and the enstrophy integrals. We show that they are inflnitesimally invariant under the Euler flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. D. Ruelle,Statistical Mechanics, Rigorous Results (Benjamin, New York, 1969).

    Google Scholar 

  2. R. L. Dobrushin, Gibbsian random fields, the general case,Funct. An. Appl. 3:22 (1969).

    Google Scholar 

  3. R. A. Minlos, Lectures on statistical physics,Russ. Math. Sun. 23:137 (1968).

    Google Scholar 

  4. O. E. Lanford III, Time evolution of large classical systems, inDynamical Systems, Theory and Applications (Lecture Notes in Physics 38), T. Moser, ed. (Springer-Verlag, Berlin, 1975), pp. 1–111.

    Google Scholar 

  5. O. E. Lanford III, Classical mechanics of one-dimensional systems of infinitely many particles I. An Existence Theorem,Comm. Math. Phys. 9:169 (1969); II. Kinetic Theory,9:257 (1969).

    Google Scholar 

  6. Ya. G. Sinai, Construction of the dynamics of one-dimensional systems of statistical mechanics,Theor. Math. Phys. 12:487 (1973).

    Google Scholar 

  7. Ya. G. Sinai, The construction of cluster dynamics for dynamical systems of statistical mechanics,Moscow Univ. Math. Bull. Ser. I, Mat. Mech. 29 (1–2):124 (1974).

    Google Scholar 

  8. C. Marchioro, A. Pellegrinotti, and E. Presutti, Existence of time evolution forν-dimensional statistical mechanics,Comm. Math. Phys. 40:175 (1975).

    Google Scholar 

  9. E. Presutti, M. Pulvirenti, and B. Tirozzi, Time evolution of infinite classical systems with singular, long range, two-body interactions,Comm. Math. Phys. 47:81 (1976).

    Google Scholar 

  10. R. Lang, Unendlich-dimensional Wienerprozesse mit Wechselwirkung. I. Existenz; Die reversible Masse sind kanonische Gibbs Masse,Z. Wahrscheinlichkeitsth. verm. Geb. 38:55;39:277 (1978).

  11. R. Alexander, Time evolution for infinitely many hard spheres,Comm. Math. Phys. 49:217 (1976).

    Google Scholar 

  12. R. L. Dobrushin and J. Fritz, Nonequilibrium dynamics of one dimensional infinite particle systems with a hard core interaction,Comm. Math. Phys. 55:275 (1977).

    Google Scholar 

  13. J. Fritz and R. L. Dobrushin, Nonequilibrium dynamics of two-dimensional infinite particle systems with a singular interaction,Comm. Math. Phys. 57:67 (1977).

    Google Scholar 

  14. G. Gallavotti, Soluzioni statistische dell'equazione di Liouville,Annali di Mat. Serie IV, CVIII:227 (1976).

    Google Scholar 

  15. G. Gallavotti and E. Verboven, On the classical KMS boundary condition,Nuovo Cim. 28B:274 (1975).

    Google Scholar 

  16. G. Gallavotti and E. Pulvirenti, Classical KMS condition and Tomita-Takesaki theory,Comm. Math. Phys. 46:1 (1976).

    Google Scholar 

  17. C. Marchioro, A. Pellegrinotti, and M. Pulvirenti, Selfadjointness of the Liouville operator for infinite classical systems,Comm. Math. Phys. 58:113 (1978).

    Google Scholar 

  18. H. M. Glaz, Two attempts at modeling two-dimensional turbulence, inTurbulence Seminar, Berkeley 1976/77 (Lecture Notes in Mathematics 615), P. Bernard and T. Ratiu, eds. (Springer, Berlin, 1977), Appendix, pp. 135–155.

    Google Scholar 

  19. E. Hopf, Statistical hydrodynamics and functional calculus,J. Rat. Mech. Anal. 1:87 (1952).

    Google Scholar 

  20. G. Prodi, Résultats récents et problèmes anciens dans la théorie des équations de Navier-Stokes, inLes équations aux dérivées partielles (Coll. Intern. CNRS 1962; CNRS, Paris, 1963), pp. 181–196.

  21. C. Foias, A functional approach to turbulence,russ. Math. Surv. 29:293 (1975).

    Google Scholar 

  22. G. Gallavotti, Problèmes ergodiques de la mécanique classique, Enseignement du 3e cycle de la Physique en Suisse Romande, Ecole Polytechnique Fédérale, Lausanne (1976).

    Google Scholar 

  23. A. J. Chorin,Lectures on Turbulence Theory (Math. Lecture Series 5, Publish or Perish, 1975).

  24. H. A. Rose and P. L. Sulem, Fully developed turbulence and statistical mechanics,J. Phys. (Paris) 39:441 (1978).

    Google Scholar 

  25. P. L. Sulem, U. Frisch, and P. Penel, Global regularity of the Navier-Stokes-MQCM equation for positive viscosity, Preprint (1977).

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Fakultät für Mathematik, Universität Bielefeld, Bielefeld, West Germany.

On leave from Matematisk Institutt, Universitetet i Oslo, Oslo, Norway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albeverio, S., Ribeiro de Faria, M. & Høegh-Krohn, R. Stationary measures for the periodic Euler flow in two dimensions. J Stat Phys 20, 585–595 (1979). https://doi.org/10.1007/BF01009512

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009512

Key words

Navigation