Skip to main content
Log in

Abstract

The bismuth microbolometer is a simple, easily made detector suitable for use throughout the far-infrared, which has been integrated with a variety of planar antennas. The general thermal properties of these devices and some of the constraints on bolometer materials are discussed. The fabrication and performance of several different types of microbolometers and microthermocouples are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Clifton, B.J., G.D. Alley, R.A. Murphy, and I.H. Mroczkowski, ‘High-performance quasi-optical GaAs monolithic mixer at 110GHz,’ IEEE Trans. Electron Devices28, 155 (1981).

    Google Scholar 

  2. Parrish, P.T., T.C.L.G. Sollner, R.H. Matthews, H.R. Fetterman, C.D. Parker, P.E. Tannenwald, and A.G. Cardiasmenos, ‘Printed dipole-Schottky diode millimeter wave antenna array,’ SPIE Proceedings Vol. 337, Millimeter Wave Technology, May 6–7, 1982.

  3. Yao, C., S.E. Schwarz, and B.J. Blumenstock, ‘Monolithic integration of a dielectric millimeter-wave antenna and mixer diode: an embrionic millimeter-wave IC,’ IEEE Trans. Microwave Theory Tech.30, 1241 (1982).

    Google Scholar 

  4. Brewitt-Taylor, C.R., D.J. Gunton, and H.D. Rees, ‘Planar antennas on a dielectric surface,’ Electron Lett.17, 729 (1981).

    Google Scholar 

  5. Engheta, N., C.H. Papas, and C. Elachi, ‘Radiation patterns of interfacial dipole antennas,’ Radio Science17, 1557 (1982).

    Google Scholar 

  6. Rutledge, D.B., D.P. Neikirk, and D.P. Kasilingam, ‘Integrated-Circuit Antennas,’ inInfrared and Millimeter Waves, Vol. 10 (K.J. Button, ed., Academic Press, New York, 1983).

    Google Scholar 

  7. Neikirk, D.P., and D.B. Rutledge, ‘Airbridge microbolometer for far-infrared detection,’ submitted for publication, Appl. Phys. Lett.

  8. Hwang, T.-L., S.E. Schwarz, and D.B. Rutledge, ‘Microbolometers for infrared detection,’ Appl. Phys. Lett.34, 773 (1979).

    Google Scholar 

  9. Neikirk, D.P., and D.B. Rutledge, ‘Self-heated thermocouples for far-infrared detection,’ Appl. Phys. Lett.41, 400 (1982).

    Google Scholar 

  10. Ashcroft, N.W., and N.D. Mermin,Solid State Physics, (Holt, Rinehart, and Winston, New York, 1976), p. 255.

    Google Scholar 

  11. Smith, R.A., F.E. Jones, and R.P. Chasmar,The Detection and Measurement of Infrared Radiation (Oxford University Press, London, 1968), p. 85.

    Google Scholar 

  12. Colombani, A., and P. Huet, ‘Electromagnetic properties of thin films of bismuth,’ International Conference on Structure and Properties of Thin Films, Bolton Landing, N.Y., 1959, (C.A. Neugebauer, J.B. Newkirk, and D.A. Vermilyea, eds., Wiley, New York, 1959).

    Google Scholar 

  13. Komnik, Yu. F., E. Bukhshtab, Yu. Nikitin, and V. Andrievskii, ‘Features of temperature dependence of the resistance of thin bismuth films,’ Zh. Eksp. Teor. Fiz.60, 669 (1971).

    Google Scholar 

  14. Abrosimov, V., B. Egorov, and M. Krykin, ‘Size effect of kinetic coefficients in polycrystalline bismuth films,’ Zh. Eksp. Teor. Fiz.64, 217 (1973).

    Google Scholar 

  15. Kawazu, A., Y. Saito, H. Asahi, and G. Tominaga, ‘Structure and electrical properties of thin bismuth films,’ Thin Solid Films37, 261 (1976).

    Google Scholar 

  16. Joglekar, A., R. Karekar, and K. Sathianandan, ‘Electrical resistivity of polycrystalline bismuth films,’ J. Vac. Sci. Technol.11, 528 (1974).

    Google Scholar 

  17. Dolan, G., ‘Offset masks for lift-off photoprocessing,’ Appl. Phys. Let.,31, 337 (1977).

    Google Scholar 

  18. Dunkleberger, L., ‘Stencil technique for the preparation of thin-film Josephson devices,’ J. Vac. Sci. Technol.,15, 88 (1978).

    Google Scholar 

  19. Neikirk, D.P., ‘Integrated detector arrays for high resolution far-infrared imaging,’ PhD thesis. California Institute of Technology, 1983.

  20. Tong, P.P., D.P. Neikirk, P.E. Young, W.A. Peebles, N.C. Luhmann, and D.B. Rutledge, ‘Imaging polarimeter arrays for near-millimeter waves,’ to be published.

  21. Dolan, G.J., T.G. Phillips, and D.P. Woody, ‘Low-noise 115-GHz mixing in superconducting oxide-barrier tunnel junctions,’ Appl. Phys. Lett.34, 347 (1979).

    Google Scholar 

  22. Danchi, W.C., F. Habbal, and M. Tinkham, ‘ac Josephson effect in small area superconducting tunnel junctions at 604GHz,’ Appl. Phys. Lett.41, 883 (1982).

    Google Scholar 

  23. Neikirk, D.P., P.P. Tong, D.B. Rutledge, H. Park, and P.E. Young, ‘Imaging antenna array at 119μm,’ Appl. Phys. Lett.41, 329 (1982).

    Google Scholar 

  24. Du Pont Co., ‘Pyralin: polyimide coatings for electronics,’ Bulletin PC-1.

  25. Dobkin, D.M., and B.D. Cantos, ‘Plasma formation of buffer layers for multilayer resist structures,’ IEEE Electron Devices Lett.EDL-2, 222 (1981).

    Google Scholar 

  26. Smith, R.A., F.E. Jones, and R.P. Chasmar,The Detection and Measurement of Infrared Radiation (Oxford University Press, London, 1968), pp. 211–213.

    Google Scholar 

  27. Jelks, E.C., R.M. Walser, R.W. Bene, and W.H. Neal II, ‘Response of thermal filaments in VO2 to laser-produced thermal perturbations,’ Appl. Phys. Lett.26, 355 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Department of Energy contract DE-AM03-765F-00010 Task IIA; Army Research Office contract DAAG29-82-K-0165; and the Jet Propulsion Laboratory through Dr. M. Litvak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neikirk, D.P., Lam, W.W. & Rutledge, D.B. Far-infrared microbolometer detectors. Int J Infrared Milli Waves 5, 245–278 (1984). https://doi.org/10.1007/BF01009656

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009656

Key words

Navigation