Skip to main content
Log in

Dynamic Monte Carlo renormalization group

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A new and simple method of applying the idea of real space renormalization group theory to the analysis of Monte Carlo configurations is proposed and applied to the Glauber kinetic Ising model in two and three dimensions, and to the Kawasaki model in two dimensions. Our method, if correct, utilizes how the system approaches its equilibrium; in contrast to most other Monte Carlo investigations there is no need to wait until equilibrium is established. The renormalization analysis takes only a small fraction of the computer time needed to produce the Monte Carlo configurations, and the results are obtained as the system relaxes atT =T c , the critical temperature. The values obtained for the dynamical critical exponent,z, are 2.12 (d=2) and 2.11 (d=3) for the Glauber model, the 3.90 for the two-dimensional Kawasaki model. These results are in good agreement with those obtained by other methods but with smaller error bars in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Ma,Phys. Rev. Lett. 37:461 (1976).

    Google Scholar 

  2. R. H. Swendsen,Phys. Rev. Lett. 42:859 (1979); R. H. Swendsen, inReal Space Renormalization, T. W. Burkhardt and J. M. J. Van Leeuwen, eds. (Topics in Current Physics, Vol. 30, Springer, Heidelberg, 1982), p. 57; G. F. Mazenko and O. T. Valls, ibid., page 87.

    Google Scholar 

  3. J. Tobochnik, S. Sarker, and R. Cordery,Phys. Rev. Lett. 46:1417, (1981).

    Google Scholar 

  4. S. L. Katz, J. D. Gunton, and C. P. Liu,Phys. Rev. B 25:6008 (1982).

    Google Scholar 

  5. M. C. Yalabik and J. D. Gunton,Phys. Rev. B 25:534 (1982).

    Google Scholar 

  6. K. Binder, ed.,Monte Carlo Methods in Statistical Physics (Topics in Current Physics, Vol. 7, Springer, Heidelberg, 1979).

    Google Scholar 

  7. R. Zorn, H. J. Herrmann, and C. Rebbi,Comp. Phys. Comm. 23:337 (1981); C. Kalle and V. Winkelmann,J. Stat. Phys. 28:639 (1982).

    Google Scholar 

  8. P. J. Reynolds, H. E. Stanley, and W. Klein,Phys. Rev. B 21:1223 (1980).

    Google Scholar 

  9. K. Kawasaki,Phys. Rev. 145:223 (1965).

    Google Scholar 

  10. K. Kawasaki, inPhase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, eds. (Academic, New York, 1972).

    Google Scholar 

  11. N. Jan and D. Stauffer,Phys. Lett. 93A:39 (1982).

    Google Scholar 

  12. J. C. Angles d'Auriac, R. Maynard, and R. Rammal,J. Stat. Phys. 28, 307 (1982).

    Google Scholar 

  13. C. K. Chakrabarti, H. G. BaumgÄrtel, and D. Stauffer,Z. Phys. B (Cond. Matter) 44:333 (1981).

    Google Scholar 

  14. R. Bausch, V. Dohm, H. K. Janssen, and R. K. P. Zia,Phys. Rev. Lett. 47:1837 (1981).

    Google Scholar 

  15. B. I. Halperin, P. C. Hohenberg, and S. K. Ma,Phys. Rev. B 10:139 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jan, N., Moseley, L.L. & Stauffer, D. Dynamic Monte Carlo renormalization group. J Stat Phys 33, 1–11 (1983). https://doi.org/10.1007/BF01009743

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009743

Key words

Navigation