Skip to main content
Log in

Shear flow in the two-body Boltzmann gas. II. Small and large γ expansion of the shear viscosity

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In two and three dimensions, the relaxation time Boltzmann equation can be solved analytically for the distribution function for a system of two hard particles subject to isothermal shear. The previous solutions of Morriss, and Ladd and Hoover are shown to be formally equivalent. The integral representation for the average of each of the elements of the pressure tensor in the steady state is obtained for both sllod and dolls tensor equations of motion. Rigorous equations are derived which relate the viscosity and the normal stress differences in these two methods. We obtain asymptotic expansions for each element of the pressure tensor for both small and largeγ. For high shear rates, the viscosity is found to vanish as γ−2 logγ in both two and three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. J. Evans, H. J. M. Hanley, and S. Hess,Phys. Today,37:26 (1984); W. G. Hoover,Ann. Rev. Phys. Chem.,34:103 (1983); D. J. Evans and W. G. Hoover,Ann. Rev. Fluid Mech.,18:243 (1986).

    Google Scholar 

  2. J. P. Hansen and I. R. McDonald,Theory of Simple Liquids, (Academic Press, New York, 1976); B. J. Berne, “Projection Operator Techniques in the Theory of Fluctuations,” inStatistical Mechanics B, B. J. Berne, ed. (Plenum, New York, 1977).

    Google Scholar 

  3. D. J. Evans and G. P. Morriss,Phys. Rev. Lett.,51:1776 (1983).

    Google Scholar 

  4. D. J. Evans,J. Chem. Phys.,78:3297 (1983).

    Google Scholar 

  5. W. G. Hoover, A. J. C. Ladd, and B. Moran,Phys. Rev. Lett.,48:1818 (1982).

    Google Scholar 

  6. G. P. Morriss and D. J. Evans,Mol. Phys.,54:629 (1985).

    Google Scholar 

  7. J. Dufty, proceedings ofInternational School of Physics, Enrico Fermi, XCVII Course, (to be published).

  8. A. J. C. Ladd and W. G. Hoover,J. Stat. Phys.,38:973 (1985).

    Google Scholar 

  9. G. P. Morriss,Phys. Lett. A.,113A:269 (1985).

    Google Scholar 

  10. W. G. Hoover,J. Stat. Phys. 42:587 (1986).

    Google Scholar 

  11. W. G. Hoover and K. W. Kratky,J. Stat. Phys. 42:1103 (1986).

    Google Scholar 

  12. A. W. Lees and S. F. Edwards,J. Phys. C5:1921 (1972).

    Google Scholar 

  13. W. G. Hoover, D. J. Evans, R. D. Hickman, A. J. C. Ladd, W. T. Ashurst, and B. Moran,Phys. Rev.,A22:1690 (1980).

    Google Scholar 

  14. D. J. Evans and G. P. Morriss,Phys. Rev.,A30:1528 (1984).

    Google Scholar 

  15. A. J. C. Ladd,Mol. Phys. 53:459 (1984).

    Google Scholar 

  16. Erdelyi, Magnus, Oberhettinger and Tricomi,Tables of Integral Transforms, Vol. 1. p. 310, Eq. (19) (McGraw-Hill, New York, 1954).

  17. E. Gross, D. Bhatnager, and M. Krook,Phys. Rev.,94:511 (1954).

    Google Scholar 

  18. R. L. Liboff,Introduction to the Theory of Kinetic Equations (Wiley, New York, 1969).

    Google Scholar 

  19. J. R. Dorfman and H. van Beijeren,The Kinetic Theory of Gases, in Statistical Mechanics B, B. J. Berne, ed. (Plenum, New York, 1977).

    Google Scholar 

  20. D. J. Evans,Phys. Rev.,A23:1988 (1981).

    Google Scholar 

  21. B. L. Holian,Phys. Rev.,A33:1152 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morriss, G.P., Isbister, D.J. & Hughes, B.D. Shear flow in the two-body Boltzmann gas. II. Small and large γ expansion of the shear viscosity. J Stat Phys 44, 107–128 (1986). https://doi.org/10.1007/BF01010907

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010907

Key words

Navigation