Skip to main content
Log in

A low noise receiver for millimeter and submillimeter wavelengths

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

A broadband, low noise heterodyne receiver, suitable for astronomical use, has been built using a Pb alloy superconducting tunnel junction (SIS). The RF coupling is quasioptical via a bowtie antenna on a quartz lens and is accomplished without any tuning elements. In this preliminary version the double sideband receiver noise temperature rises from 205 K at 116 GHz to 375 K at 349 Ghz, and to 815 K at 466 GHz. This is the most versatile and sensitive receiver yet reported for sub-mm wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Tucker and M. F. Millea, “Photon detection in nonlinear tunneling devices,”Appl. Phys. Lett., vol. 33, pp. 611–613, Oct. 1978.

    Google Scholar 

  2. J. R. Tucker, “Quantum limited detection in tunnel junction mixers,”IEEE J. Quantum Electron., vol. QE-15, pp. 1234–1258, Nov. 1979.

    Google Scholar 

  3. P. L. Richards, T. M. Shen, R. E. Harris and F. L. Llyod, “Quasiparticle heterodyne mixing in SIS tunnel junctions,”Appl. Phys. Lett., vol. 34, pp. 345–347, Mar. 1, 1979.

    Google Scholar 

  4. G. J. Dolan, T. G. Phillips and D. P. Woody, “Low-noise 115-GHz mixing in superconducting oxide-barrier tunnel junctions,”Appl. Phys. Lett., vol. 34, pp. 347–349, Mar. 1, 1979.

    Google Scholar 

  5. E. C. Sutton, “A superconducting tunnel junction receiver for 230 GHz,”IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp. 589–592, July 1983.

    Google Scholar 

  6. S.-K. Pan, M. J. Feldman, A. R. Kerr, and P. Timbie, “Low-noise 115-GHz receiver using superconducting tunnel junctions,”Appl. Phys. Lett., vol. 43, pp. 786–788, Oct. 1983.

    Google Scholar 

  7. Larry R. D'Addario, “An SIS Mixer for 90–120 GHz with Gain and Wide Bandwidth,”Intl. J. of IR and Millimeter Waves, vol. 5, pp. 1419–1442, 1985.

    Google Scholar 

  8. D. P. Woody, R. E. Miller, and M. J. Wengler, “85–115 GHz Receivers for Radio Astronomy,”IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 90–95, Feb. 1985.

    Google Scholar 

  9. A. A. Stark and R. E. Miller, private communication, 1984.

  10. B. L. Ulich, C. J. Lada, N. R. Erickson, P. F. Goldsmith, and G. R. Huguenin, “Performance of the Multiple Mirror Telescope (MMT): X. The first submillimeter phased array,”Proc. SPIE, vol. 332, pp. 72–78, 1982.

    Google Scholar 

  11. N. R. Erickson and H. R. Fetterman, “A submillimeter mixer and frequency multiplier in single mode waveguide,”preprint, 1985.

  12. H. P. Röser, E. J. Durwen, R. Wattenbach, and G. V. Schultz, “Investigation of a heterodyne receiver with open structure mixer at 324 GHz and 693 GHz,”Intl. J. of IR and Millimeter Waves, vol. 5, pp. 301–314, March 1984. Also: H. P. Röser, R. Wattenbach, and P. van der Wal, “Tunable heterodyne receiver from 100 μm to 1000 μm for airborne observations,”Airborne Astronomy Symposium, NASA Conference Publication 2353, pp. 330–334, 1984.

    Google Scholar 

  13. A. Betz and J. Zmuidzinas, “A 150 μm to 500 μm heterodyne spectrometer for airborne astronomy,”Airborne Astronomy Symposium, NASA Conference Publication 2353, pp. 320–329, 1984.

  14. T. G. Phillips and K. B. Jefferts, “A low temperature bolometer heterodyne receiver for millimeter wave astronomy,”Rev. Sci. Inst., vol. 44, pp. 1009–1014, Aug. 1973.

    Google Scholar 

  15. T. G. Phillips and D. P. Woody, “Millimeter- and submillimeter-wave receivers,”Ann. Rev. Astron. Astrophys., vol. 20, pp. 285–321, 1982.

    Google Scholar 

  16. John R. Tucker and Marc J. Feldman, “Quantum Detection at Millimeter Wavelengths,”unpublished, 1984.

  17. Dean P. Neikirk, Peter P. Tong, David B. Rutledge, Hyeon Park, and Peter E. Young, “Imaging antenna array at 119 μm,”Appl. Phys. Lett., vol. 41, pp. 329–331, Aug. 1982.

    Google Scholar 

  18. D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, “Integrated-Circuit Antennas” inInfrared and Millimeter Waves, K. J. Button, Ed., vol. 10, pp. 1–90, New York: Academic Press, 1984.

    Google Scholar 

  19. M. Tinkham,Introduction to Superconductivity, New York: McGraw-Hill, 1975.

    Google Scholar 

  20. D. B. Rutledge, private communication, Feb. 1984.

  21. L. N. Dunkleberger, “Stencil technique for the preparation of thin-film Josephson devices,”J. Vac. Sci. Tech., vol. 15, pp. 88–90, Jan. 1978.

    Google Scholar 

  22. G. J. Dolan, “Offset masks for lift-off photoprocessing,”Appl. Phys. Lett., vol. 31, pp. 337–339, Sept. 1977.

    Google Scholar 

  23. A. D. Smith and P. L. Richards, “Analytic solutions to superconductor-insulator-superconductor quantum mixer theory,”J. Appl. Phys., vol. 53, pp. 3806–3812, May 1982.

    Google Scholar 

  24. Model LTE-1138 coolable isolator, Pamtech, Canoga Park, California, 91304, USA.

  25. S. Weinreb, D. L. Fenstermacher, R. W. Harris, “Ultra-low-noise 1.2 to 1.7 GHz cooled GaAsFET amplifiers,”IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp. 849–853, June 1982.

    Google Scholar 

  26. M. V. Schneider, “Metal-Semiconductor Junctions as Frequency Converters” inInfrared and Millimeter Waves, K. J. Button, Ed., vol. 6, pp. 210–275, New York: Academic Press, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wengler, M.J., Woody, D.P., Miller, R.E. et al. A low noise receiver for millimeter and submillimeter wavelengths. Int J Infrared Milli Waves 6, 697–706 (1985). https://doi.org/10.1007/BF01011947

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01011947

Keywords

Navigation