Skip to main content
Log in

Fractal and lacunary stochastic processes

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Discrete-time random walks simulate diffusion if the single-step probability density function (jump distribution) generating the walk is sufficiently shortranged. In contrast, walks with long-ranged jump distributions considered in this paper simulate Lévy or stable processes. A one-dimensional walk with a selfsimilar jump distribution (the Weierstrass random walk) and its higherdimensional generalizations generate fractal trajectories if certain transience criteria are met and lead to simple analogs of deep results on the Hausdorff-Besicovitch dimension of stable processes. The Weierstrass random walk is lacunary (has gaps in the set of allowed steps) and its characteristic function is Weierstrass' non-differentiable function. Other lacunary random walks with characteristic functions related to Riemann's zeta function and certain numbertheoretic functions have very interesting analytic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Thompson,Contemp. Phys. 19:203 (1978).

    Google Scholar 

  2. M. Sahimi, B. D. Hughes, L. E. Scriven, and H. T. Davis,J. Chem. Phys., to appear.

  3. A. Ben-Mizrahi and D. J. Bergman,J. Phys. C: Solid St. Phys. 14:909 (1981).

    Google Scholar 

  4. B. D. Hughes and M. F. Shlesinger,J. Math. Phys.,23:1688 (1982).

    Google Scholar 

  5. W. Feller,An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd edition (Wiley, New York, 1971).

    Google Scholar 

  6. P. Lévy,Théorie de l'addition des variables aléatoires (Gauthier-Villars, Paris, 1937).

    Google Scholar 

  7. J. E. Gillis and G. H. Weiss,J. Math. Phys. 11:1307 (1970).

    Google Scholar 

  8. E. C. Titchmarch,The Theory of the Riemann Zeta Function (Oxford, Clarendon Press, 1951).

    Google Scholar 

  9. G. Pólya,Math. Ann. 84:149 (1921).

    Google Scholar 

  10. K. Lindenberg, V. Seshadri, K. E. Shuler, and G. H. Weiss,J. Stat. Phys. 23:11 (1980).

    Google Scholar 

  11. E. W. Montroll,Proc. Symp. Appl. Math. 16:193 (1964).

    Google Scholar 

  12. B. B. Mandelbrot,Fractals: Form, Chance and Dimension (W. H. Freeman, San Francisco; 1977); andThe Fractal Geometry of Nature (W. H. Freeman, San Francisco, 1982).

    Google Scholar 

  13. B. D. Hughes, M. F. Shlesinger, and E. W. Montroll,Proc. Nat. Acad. Sci. (USA),78:3287 (1981).

    Google Scholar 

  14. B. D. Hughes, E. W. Montroll, and M. F. Shlesinger,J. Stat. Phys. 28:111 (1982).

    Google Scholar 

  15. M. F. Shlesinger and B. D. Hughes,Physica 109A:597 (1981).

    Google Scholar 

  16. W. Hurewicz and H. Wallman,Dimension Theory (Princeton University Press, Princeton, New Jersey, 1948).

    Google Scholar 

  17. K. Menger,Amer. Math. Monthly 50:2 (1943).

    Google Scholar 

  18. H. P. McKean,Ann. Math. 61:564 (1955).

    Google Scholar 

  19. R. M. Blumenthal and R. K. Getoor,Trans. Amer. Math. Soc. 95:263 (1960).

    Google Scholar 

  20. P. Dienes,The Taylor Series (Oxford University Press, Oxford, 1931).

    Google Scholar 

  21. J. P. Kahane,Bull. Amer. Math. Soc. 70:193 (1964).

    Google Scholar 

  22. E. Fabry,Annales Sc. de l' École Normale (3)13:107 (1896).

    Google Scholar 

  23. G. H. Hardy,Trans. Amer. Math. Soc. 17:301 (1916).

    Google Scholar 

  24. E. Neuenschwander,Math. Intelligencer 1:40 (1978); S. L. Segal,ibid. 1:81 (1978).

    Google Scholar 

  25. H. M. Edwards,Riemann's Zeta Function (Academic Press, New York, 1974).

    Google Scholar 

  26. G. N. Watson,A Treatise on the Theory of Bessel Functions, 2nd edition (Cambridge University Press, 1944).

  27. V. M. Kenkre, E. W. Montroll, and M. F. Shlesinger,J. Stat. Phys. 9:45 (1973).

    Google Scholar 

  28. T. Carleman,Acta Math. 59:63 (1932); E. W. Montroll and R. H. G. Helleman,AIP Conf. Proc. 27:75 (1976); E. W. Montroll,AIP Conf. Proc. 46:337 (1978).

    Google Scholar 

  29. T. Nishigori,J. Math. Phys. 22:2903 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the U.S. Department of Energy.

Supported by a grant from DARPA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, B.D., Montroll, E.W. & Shlesinger, M.F. Fractal and lacunary stochastic processes. J Stat Phys 30, 273–283 (1983). https://doi.org/10.1007/BF01012302

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012302

Key words

Navigation