Skip to main content
Log in

Theory of hopping and multiple-trapping transport in disordered systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a general theory to describe equilibrium as well as nonequilibrium transport properties of systems in which the carriers perform an incoherent motion that can be described by means of a set of master equations. This includes hopping as well as trapping in the localized energy region of amorphous or perturbed crystalline semiconductors. Employing the mathematical analogy between the master equations and the tight binding problem we develop approximation schemes using methods of many-particle physics to derive expressions for the averaged propagator of the carriers and the conductivity tensor. The calculated conductivity and Hall conductivity of hopping systems compare extremely well to computer simulations over the whole range of frequency, density, and temperature. We are able to derive expressions for dispersive transport in hopping as well as trapping systems that contain the results of earlier theories of Scher, Montroll and Noolandi, Schmidlin as special cases and establish criteria for the occurrence of dispersive transport in such systems. We find that in principle hopping can lead to dispersive transport if the times and densities are very low, but actual experimental data are more easily explained in terms of multiple trapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Böttger and V. V. Bryksin,Phys. Stat. Sol. (b) 78:9 and 415 (1976).

    Google Scholar 

  2. S. Alexander, J. Bernasconi, W. R. Schneider, and R. Orbach,Rev. Mod. Phys. 53:175 (1981).

    Google Scholar 

  3. B. Movaghar,J. Phys. (Paris) 42, Suppl.:C4–83 (1981).

    Google Scholar 

  4. V. Ambegaokar, B. F. Halperin, and J. S. Langer,Phys. Rev. B 4:2612 (1971).

    Google Scholar 

  5. H. Scher and M. Lax,Phys. Rev. B 10:4491 and 4502 (1973).

    Google Scholar 

  6. B. Movaghar, B. Pohlmann, and W. Schirmacher,Phil. Mag. B 41:49 (1980).

    Google Scholar 

  7. C. R. Gochanour, H. C. Andersen, and M. D. Fayer,J. Chem. Phys. 70:9 (1979).

    Google Scholar 

  8. P. N. Butcher,J. Phys. C 7:879 (1974).

    Google Scholar 

  9. B. Movaghar, B. Pohlmann, and W. Schirmacher,Solid State Commun. 34:451 (1980).

    Google Scholar 

  10. B. Movaghar, B. Pohlmann, and G. Sauer,Phys. Stat. Sol. (b) 97:533 (1980).

    Google Scholar 

  11. B. Movaghar and W. Schirmacher,J. Phys. C 14:859 (1981).

    Google Scholar 

  12. B. Movaghar, B. Pohlmann, and D. Würtz,J. Phys. C 14:5127 (1981).

    Google Scholar 

  13. W. Schirmacher,Solid State Commun. 39:893 (1981).

    Google Scholar 

  14. K. Godzik and W. Schirmacher,J. Phys. (Paris) 42, Suppl.:C4–127 (1981).

    Google Scholar 

  15. B. Movaghar,J. Phys. C 13:4915 (1980).

    Google Scholar 

  16. P. N. Butcher, inLinear and Nonlinear Electronic Transport in Solids, J. T. Devreese and V. E. van Dooren, eds. (Plenum Press, New York, 1976), p. 341.

    Google Scholar 

  17. M. Grünewald, B. Pohlmann, D. Würtz, and B. Movaghar, to be published.

  18. R. J. Elliott, J. A. Krumhansl, and P. L. Leath,Rev. Mod. Phys. 46:465 (1974).

    Google Scholar 

  19. B. Movaghar, G. Sauer, D. Würtz, and D. L. Huber,Solid State Commun. 39:1179 (1981); and B. Movaghar, G. Sauer, and D. Würtz,J. Stat. Phys. 27:in press.

    Google Scholar 

  20. D. L. Huber, inLaser Spectroscopy of Ions, Molecules and Solids, W. M. Yen and P. M. Selzer, eds. (Springer, Berlin, 1981), p. 83.

    Google Scholar 

  21. S. Kirkpatrick,Rev. Mod. Phys. 45:574 (1973).

    Google Scholar 

  22. T. Odagaki and M. Lax,Phys. Rev. B 24:5284 (1981);25:3201 (1982).

    Google Scholar 

  23. I. Webmann,Phys. Rev. Lett. 47:1496 (1981).

    Google Scholar 

  24. V. Halpern,J. Phys. (Paris) 42, Suppl:C4–119 (1981).

    Google Scholar 

  25. S. Summerfield and P. N. Butcher,J. Phys. C, in press.

  26. T. Holstein,Phys. Rev. 124:1329 (1961).

    Google Scholar 

  27. J. Böttger and V. V. Bryksin,Phys. Stat. Sol. (b) 80:569;81:433 (1977).

    Google Scholar 

  28. N. F. Mott and E. A. Davis:Electronic Processes in Noncrystalline Materials (Clarendon Press, Oxford, 1971).

    Google Scholar 

  29. J. A. McInnes and P. N. Butcher,Phil. Mag. B39:1 (1979).

    Google Scholar 

  30. L. Friedman, M. Pollak,Phil. Mag. B38:173 (1978).

    Google Scholar 

  31. Biskupski, thesis, University of Lille (1982).

  32. J. A. McInnes and P. N. Butcher,Phil. Mag. B44:595 (1981).

    Google Scholar 

  33. L. Friedman and M. Pollak,Phil. Mag. B44:487 (1981).

    Google Scholar 

  34. M. Grünewald, H. Müller, and D. Würtz,Solid State Commun, in press.

  35. M. Grünewald, H. Müller, P. Thomas, and D. Würtz,Solid State Commun. 38:1011 (1981).

    Google Scholar 

  36. M. Amitay and M. Pollak,J. Phys. Soc. Jpn. 21, Suppl.:549 (1966).

    Google Scholar 

  37. B. Movaghar, B. Pohlmann, and D. Würtz, to be published.

  38. G. Pfister and H. Scher,Adv. Phys. 27:747 (1978).

    Google Scholar 

  39. H. Scher and E. W. Montroll,Phys. Rev. B 12:2455 (1975).

    Google Scholar 

  40. J. Noolandi,Phys. Rev. B 16:4466 (1977).

    Google Scholar 

  41. F. W. Schmidlin,Phys. Rev. B 16:2362 (1977).

    Google Scholar 

  42. F. W. Schmidlin,Phil. Mag. B41:535 (1980).

    Google Scholar 

  43. J. Klafter and R. Silbey,Phys. Rev. Lett. 44:55 (1980).

    Google Scholar 

  44. G. F. Leal Ferreira,Phys. Rev. B 16:4719 (1977).

    Google Scholar 

  45. P. N. Butcher and J. D. Clark,Phil. Mag. B42:191 (1980).

    Google Scholar 

  46. K. Godzik, B. Pohlmann, W. Schirmacher, and D. Würtz, to be published.

  47. M. Pollak,Phil. Mag. 36:1157 (1977).

    Google Scholar 

  48. J. M. Marshal,Phil. Mag. B38:335 (1978);B43:401 (1981).

    Google Scholar 

  49. J. Adler and M. Silver,Phil. Mag. B45:307 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Movaghar, B., Grünewald, M., Pohlmann, B. et al. Theory of hopping and multiple-trapping transport in disordered systems. J Stat Phys 30, 315–334 (1983). https://doi.org/10.1007/BF01012306

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01012306

Key words

Navigation