Skip to main content
Log in

Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The eight-vertex model is equivalent to a “solid-on-solid” (SOS) model, in which an integer heightl i is associated with each sitei of the square lattice. The Boltzmann weights of the model are expressed in terms of elliptic functions of period 2K, and involve a variable parameter η. Here we begin by showing that the hard hexagon model is a special case of this eight-vertex SOS model, in which η=K/5 and the heights are restricted to the range 1⩽l i⩽4. We remark that the calculation of the sublattice densities of the hard hexagon model involves the Rogers-Ramanujan and related identities. We then go on to consider a more general eight-vertex SOS model, with η=K/r (r an integer) and 1⩽l ir−1. We evaluate the local height probabilities (which are the analogs of the sublattice densities) of this model, and are automatically led to generalizations of the Rogers-Ramanujan and similar identities. The results are put into a form suitable for examining critical behavior, and exponentsβ, α,\(\bar \alpha \) are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Fan and F. Y. Wu,Phys. Rev. B 2:723 (1970).

    Google Scholar 

  2. R. J. Baxter,Ann Phys. (N.Y.) 70:193 (1972).

    Google Scholar 

  3. F. Y. Wu,Phys. Rev. B 4:2312 (1971); L. P. Kadanoff and F. J. Wegner,Phys. Rev. B 4:3989 (1971).

    Google Scholar 

  4. R. J. Baxter,J. Phys. C 6:L445 (1973).

    Google Scholar 

  5. E. H. Lieb and F. Y. Wu, inPhase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. S. Green, eds. (Academic, London, 1972), pp. 321–490.

    Google Scholar 

  6. R. J. Baxter and F. Y. Wu,Austral. J. Phys. 27:357 and 369 (1974).

    Google Scholar 

  7. R. J. Baxter and I. G. Enting,J. Phys. A 9:L149 (1976).

    Google Scholar 

  8. R. J. Baxter,J. Phys. A,13:L61 (1980).

    Google Scholar 

  9. R. J. Baxter,J. Stat. Phys. 26:427 (1981).

    Google Scholar 

  10. R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic, London, 1982).

    Google Scholar 

  11. R. J. Baxter,Ann. Phys. (N.Y.),76:1 (1973).

    Google Scholar 

  12. R. J. Baxter,Ann. Phys. (N.Y.),76:25 (1973).

    Google Scholar 

  13. R. J. Baxter,Ann. Phys. (N.Y.),76:48 (1973).

    Google Scholar 

  14. M. Gaudin,La fonction d'onde de Bethe (Masson, Paris, 1983).

    Google Scholar 

  15. B. Gordon,Am. J. Math. 83:393 (1961).

    Google Scholar 

  16. G. E. Andrews,The Theory of Partitions (Addison-Wesley, Reading, Massachusetts, 1976).

    Google Scholar 

  17. I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series and Products (Academic, New York, 1965).

    Google Scholar 

  18. E. T. Whittaker and G. N. Watson,A Course of Modern Analysis (Cambridge University Press, Cambridge, 1950).

    Google Scholar 

  19. N. E. Pegg,J. Phys. A 15:L549 (1982).

    Google Scholar 

  20. R. J. Baxter and P. A. Pearce,J. Phys. A 15:897 (1982);16:2239 (1983).

    Google Scholar 

  21. R. J. Baxter,J. Stat. Phys. 28:1 (1982).

    Google Scholar 

  22. R. J. Baxter, inFundamental Problems in Statistical Mechanics V, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1980).

    Google Scholar 

  23. R. J. Baxter,Physica 106A:18 (1981).

    Google Scholar 

  24. D. A. Huse,Phys. Rev. Lett. 49:1121 (1982).

    Google Scholar 

  25. T. M. Apostol,Modular Functions and Dirichlet Series in Number Theory (Springer, New York, 1976).

    Google Scholar 

  26. G. E. Andrews,Proc. Natl. Acad. Sci. (U.S.A.) 78:5290 (1981).

    Google Scholar 

  27. I. Schur,Sitzungsber. Akad. Wissensch. Berlin Phys.-Math. Kl. p. 488 (1926).

  28. C. R. Adams,Bull. Am. Math. Soc. 37:361 (1931).

    Google Scholar 

  29. G. E. Andrews, inTheory and Application of Special Functions, R. Askey, ed. (Academic, New York, 1975).

    Google Scholar 

  30. G. E. Andrews,Proc. Natl. Acad. Sci. (U.S.A.) 71:4082 (1974).

    Google Scholar 

  31. L. J. Slater,Proc. London Math. Soc. (2) 54:147 (1952).

    Google Scholar 

  32. L. J. Slater,Generalized Hypergeometric Functions (Cambridge University Press, Cambridge, 1966).

    Google Scholar 

  33. G. N. Watson,J. London Math. Soc. 4:4 (1929).

    Google Scholar 

  34. B. J. Birch,Math. Proc. Cambridge Philos. Soc. 78:73 (1975).

    Google Scholar 

  35. L. J. Rogers,Proc. London Math. Soc. (2),19:387 (1921).

    Google Scholar 

  36. H. B. C. Darling,Proc. London Math. Soc. (2) 19:350 (1921).

    Google Scholar 

  37. L. J. Mordell,Proc. London Math. Soc. (2) 20:408 (1922).

    Google Scholar 

  38. G. N. Watson,J. Indian Math. Soc. 20:57 (1933).

    Google Scholar 

  39. L. J. Rogers,Proc. London Math. Soc. 25:318 (1894).

    Google Scholar 

  40. S. Ramanujan,Proc. Cambridge Philos. Soc. 19:214 (1919).

    Google Scholar 

  41. D. M. Bressoud,J. London Math. Soc. (2) 16:9 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Guggenheim Foundation and in part by the National Science Foundation, grant MCS 8201733.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrews, G.E., Baxter, R.J. & Forrester, P.J. Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities. J Stat Phys 35, 193–266 (1984). https://doi.org/10.1007/BF01014383

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01014383

Key words

Navigation