Skip to main content
Log in

Probe measurements in thermal plasma jets

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Measurements of composition, temperature, and velocity in atmospheric argon plasma jets are reported, using enthalpy probes. The plasma jets are generated by a commercial type plasma gun and the measurements are expected to be of particular interest for industrial applications such as plasma spraying. Emphasis has been on the central and downstream regions of the plasma flame. The entrainment of air into the jet was found to be very high, even close to the axis of the jet. Gas samples analyzed with a gas chromatograph showed demixing of the air, i.e., nitrogen is more abundant in the jet than at room temperature. The high air entrainment has a strong cooling effect on the plasma, resulting in a rapid temperature drop along the axis. The influence of the argon flow rate and of the arc current on the jet's conditions was parametrically studied. Matching of the quantities measured in the jet with the torch input confirmed the validity of the results, and the relevance of enthalpy probe diagnostics in thermal plasma jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CA:

effective cross-sectional area of sonic orifice (m2)

c P :

specific heat at constant pressure [J/(kg K)]

c V :

specific heat at constant volume [J/(kg K)]

D :

diameter (mm)

h :

Specific enthalpy (J/kg)

m :

mass flow rate (kg/s)

M :

molecular mass (kg/kmol)

p :

pressure (N/m2)

Q j :

enthalpy flux through a jet's cross section (W)

r :

radial coordinate (mm)

r 0 :

limit of integration (mm)

R :

universal gas constant [J/(kmol K)]

T :

temperature (K)

v :

velocity (m/s)

X :

mole fraction

z :

Distance from the nozzle (mm)

γ:

Specific heat ratio

ρ:

mass density (kg/m3)

atm:

atmospheric conditions

F:

with flow through the probe

g :

gas sample

j:

jet

n:

nozzle

NF:

with no flow through the probe

o:

conditions upstream of the sonic orifice

p:

plasma

s:

gas sample at the exit of the probe

st:

stagnation conditions

w:

cooling water

References

  1. M. Brossa, “Probe mesurements in argon plasma jets,” M. S. Thesis, University of Minnesota, 1986.

  2. J. Fizdon, W. Gauk, and J. Daniault, “Mesure des parametres du jet de plasma pour plasmatron de projection,”Rev. Int. Hautes Temp. Refract. 13, 11 (1967).

    Google Scholar 

  3. J. Grey and P. F. Jacobs, “Experiment on turbulent mixing in a partially ionized gas,”AIAA J. 2, 433 (1964).

    Google Scholar 

  4. J. Grey, “Laminar and turbulent mixing of field-free plasma,” Plasma Arc Seminar, Thermomechanics Res. Labs., Wright-Patterson AFB, Ohio, September 1962.

  5. J. Grey, M. P. Sherman, P. M. Williams and D. B. Fradkin, “Laminar arc jet mixing and heat transfer: theory and experiment,”AIAA J. 4, 986 (1966).

    Google Scholar 

  6. J. Grey, P. M. Williams, and D. B. Fradkin, “Mixing and heat transfer of an argon arc jet with a coaxial flow of cold helium,” NASA CR-54432, October 1964.

  7. T. Honda, and A. Kanzawa, “Recombination in the decay of argon plasma jet surrounded by Ar, He, and H2 gases,”AIAA J., Tech. Notes 15, 1353 (1977).

    Google Scholar 

  8. E. Fleck, Y. C. Lee, and E. Pfender, “A gas-shrouded plasma spray torch,” 7th Int. Symposium on Plasma Chem., Eindhoven, 1985.

  9. A. Mazza, “Studies of an arc plasma reactor for thermal plasma synthesis,” Ph.D. Thesis, University of Minnesota, 1983.

  10. T. J. O'Connor, E. H. Comfort, and L. A. Cass, “Turbulent mixing of an axisymmetric jet of partially dissociated nitrogen with ambient air,”AIAA J. 4, 2026 (1966).

    Google Scholar 

  11. S. Katta, J. A. Lewis, and W. H. Gauvin, “A plasma calorimetric probe,”Rev. Sci. Instrum. 44, 519 (1973).

    Google Scholar 

  12. G. F. Au and U. Sprengel, “Kalorimetrische Messungen von ortlichen Temperaturen und Geschwindigkeiten in einem Stickstoff-Plasmastrahl,”Z. Flugwiss. 14, 188 (1966).

    Google Scholar 

  13. E. Fleck, “Velocity and temperature measurements in thermal plasma jets,” Ph.D. Thesis, University of Minnesota, 1986.

  14. C. Boffa and E. Pfender, “Enthalpy probe and spectrometric studies in argon plasma jets,” HTL Tech. Report No. 73., University of Minnesota.

  15. K. Etemadi, “Investigation of high current arcs by computer-controlled plasma spectroscopy,” Ph.D. Thesis, University of Minnesota, 1982.

  16. J. Grey, “Thermodynamic methods of high-temperature measurement,”ISA Trans. 4, 102 (1965).

    Google Scholar 

  17. J. Grey, P. F. Jacobs, M. P. Sherman, “Calorimetric probe for the measurement of extremely high temperatures,”Rev. Sci. Instrum.,33, 738 (1962).

    Google Scholar 

  18. F. P. Incropera and G. Leppert, “Investigation of are jet temperature-measurement technique,”ISA Trans. 6, 35 (1967).

    Google Scholar 

  19. C. Boffa, “Apparato sperimentale per la determinazione delle proprieta termodinamiche in un getto di plasma d'argon generato mediante arco elettrico, a pressione atmosferica,”Congr. Naz. ATI, September 1968.

  20. F. A. Vassalla, “Miniature enthalpy probes for high-temperature gas streams,” ARL Report 66-0115, June 1966.

  21. F. A. Vassalla, “Miniature probes for the instantaneous measurement of enthalpy in are jets,” ARL Report 67-0181, September 1967.

  22. J. Grey, “Sensitivity analysis for the calorimetric probe,”Rev. Sci. Instrum. 34, 857 (1963).

    Google Scholar 

  23. A. L. Hare, “Velocity measurements in plasma flows using cooled Pitot tubes—an unsolved problem,” 3rd Int. Symposium on Plasma Chem., Limoges, G.3.2 (1977).

  24. A. L. Hare, “Enthalpy probes—a contribution to the theory of operation,” 3rd Int. Symposium on Plasma Chem., Limoges, G.3.1 (1977).

  25. M. D. Petrov and V. A. Sepp, “Use of a small probe for determining the temperature and total pressure profiles in a dense plasma flow,”High Temp. 8, 868 (1970).

    Google Scholar 

  26. S. V. Dresvin and V. S. Klubnikin, “Plasma temperature measurements using an enthalpy probe,”High Temp. 13, 400 (1975).

    Google Scholar 

  27. J. B. Cox and F. J. Weinberg, “On the behaviour of enthalpy probes in fluctuating temperature environments,”J. Phys. D: Appl. Phys. 4, 877 (1971).

    Google Scholar 

  28. B. T. Arnberg, “Review of critical flow meters for gas flow measurements,”J. Basic Eng. 84, 447 (1962).

    Google Scholar 

  29. K. C. Hsu, “A self-consistent model for the high-intensity free-burning argon are,” Ph.D. Thesis, University of Minnesota, 1982.

  30. Y. C. Lee, “Modelling work in plasma processing,” Ph.D. Thesis, University of Minnesota, 1984.

  31. R. Kocache, “The measurement of oxygen in gas mixtures,”J. Phys. E: Sci. Instrum. 19, 401 (1986).

    Google Scholar 

  32. W. Frie and H. Maecker, “Massentrennung durch Diffusion reagierender Gase,”Z. Phys. 162, 69 (1961).

    Google Scholar 

  33. J. Richter, “Über Diffusionsvorgänge in Lichtbögen,”Z. Astrophys. 53, 262 (1961).

    Google Scholar 

  34. H. Maecker, “Fortschritte in der Bogenphysik,”Proc. Fifth Intern. Conf. on Ionization Phenom. in Gases Munich, 1961, North-Holland, The Netherlands (1961).

    Google Scholar 

  35. K. Etemadi and E. Pfender, “Computer-controlled plasma emission spectroscopy,”Rev. Sci. Instrum. 53, 255 (1982).

    Google Scholar 

  36. L. M. Biberman and G. E. Norman, “Continuous spectra of atomic gases and plasmas,”Sov. Phys. Usp. 10, 52 (1967).

    Google Scholar 

  37. J. K. Morris, R. U. Krey, and R. L. Garrison, “Radiation studies of are-heated nitrogen, oxygen, and argon plasmas,” ARL Report 68-0103, May 1968.

  38. P. H. Dundas, “Induction plasma heating: measurement of gas concentrations, temperatures, and stagnation heads in a binary plasma system,” NASA CR-1527, February 1970.

  39. J. F. Coudert, Private communication, July 1986.

  40. C. Boffa, J. Heberlein, and E. Pfender, “Criterion for establishing deviations from the local thermodynamic equilibrium in atmospheric-pressure argon plasma jets,”Warme Stoffubertragung,4, 213 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brossa, M., Pfender, E. Probe measurements in thermal plasma jets. Plasma Chem Plasma Process 8, 75–90 (1988). https://doi.org/10.1007/BF01016932

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01016932

Key Words

Navigation