Skip to main content
Log in

Equilibrium shapes of crystals in a gravitational field: Crystals on a table

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the variational problem associated with the equilibrium shape of crystals resting on a table in a gravitational field. For two-dimensional crystals the shape can be calculated explicitly, i.e., reduced to quadrature. In three dimensions only qualitative results are available. The most interesting new result is that for large crystals, under suitable conditions, the top may be a corrugated facet or curved surface. The motivation for this work comes from lowtemperature experiments on helium crystals in equilibrium with the superfluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Adamson,Physical Chemistry of Surfaces, third ed., (Wiley, New York, 1976).

    Google Scholar 

  2. F. J. Almgren, Existence and regularity, almost everywhere, of solutions to elliptic variational problems with constraints,Mem. Am. Math. Soc. 165:1 (1976).

    Google Scholar 

  3. F. J. Almgren and J. E. Taylor, The geometry of soap films and soap bubbles,Sci. Am., 82–93 July (1976).

  4. F. A. Andreev,Sov. Phys. JETP 53:1063 (1981).

    Google Scholar 

  5. J. Avron, L. S. Balfour, C. G. Kuper, J. Landau, S. G. Lipson, and L. S. Schulman, Roughening transition in the4He solid-superfluid interface,Phys. Rev. Lett. 45:814–817 (1980).

    Google Scholar 

  6. S. Balibar, D. O. Edwards, and C. Laroche, Surface tension of solid4He,Phys. Rev. Lett. 42:782 (1979).

    Google Scholar 

  7. S. Balibar and B. Castaing, Possible observation of roughening transition in helium,J. Phys. (Paris) 41:329 (1980).

    Google Scholar 

  8. G. C. Benson and K. S. Yun, Surface energy and surface tension of crystalline solids, inThe Solid-Gas Interface, E. A. Flood, ed. (Marcel Dekker, New York, 1967).

    Google Scholar 

  9. B. Borden and C. Radin, The crystal structure of noble gasses,J. Chem. Phys. 75:2012–2013 (1981).

    Google Scholar 

  10. H. Busemann,Convex Surfaces (Interscience, New York, 1958).

    Google Scholar 

  11. J. W. Cahn, Critical point wetting,J. Chem. Phys. 66:3667 (1977).

    Google Scholar 

  12. J. W. Cahn and D. W. Hoffman, A vector thermodynamics for anisotropic surfaces—II. Curved and faceted surfaces,Acta Metallurgica 22:1205–1214 (1974).

    Google Scholar 

  13. M. W. Cole, D. L. Goodstein, and D. Kwoh, Electrohydrodynamic instability in a superthick superfluid film,J. Phys. (Paris) 39:C6-318–320 (1978).

    Google Scholar 

  14. R. Courant,Dirichlet Problem Conformal Mapping and Minimal Surfaces (Interscience, New York, 1950).

    Google Scholar 

  15. I. Ekeland and R. Temam,Analyse Convexe et Problemes Variationnels (Dunod, Paris, 1974).

    Google Scholar 

  16. R. Finn, The sessile liquid drop, 1. Symmetric case,Pacific J. Math. 88:549–587 (1980).

    Google Scholar 

  17. H. Flanders,Differential Forms (Academic Press, New York, 1963).

    Google Scholar 

  18. P. Funk,Variationsrechnung und ihre Anwendung in Physik und Technik (Springer, Berlin, 1970).

    Google Scholar 

  19. D. G. Gilbarg and N. S. Trudinger,Elliptic Partial Differential Equations of Second Order (Springer, New York, 1977), Theorem 3.5.

    Google Scholar 

  20. C. Herring, Some theorems on the free energy of crystal surfaces,Phys. Rev. 82:87–93 (1951).

    Google Scholar 

  21. C. Herring, The use of classical macroscopic concepts in surface energy problems, inStructure and Properties of Solid Surfaces, R. Gomer, ed. (University of Chicago Press, Chicago, 1952), pp. 5–73.

    Google Scholar 

  22. D. W. Hoffman and J. W. Cahn, A vector thermodynamics for antisotropic surfaces—I. Fundamentals and applications to plane surface junctions,Surf. Sci. 31:368–388 (1972).

    Google Scholar 

  23. C. Jayaprakash, W. F. Saam, and S. Teitel, Roughening and facet formation in crystals,Phys. Rev. Lett. 50:2017 (1983).

    Google Scholar 

  24. K. O. Keshishev, A. Ya. Parshin, and A. V. Babkin, Crystallization waves in4He,Zh. Exp. Theor. Fiz. 80:716 (1981); English trans.,Sov. Phys. JETP 53:362 (1981).

    Google Scholar 

  25. J. Landau, S. G. Lipson, L. M. Maattanen, L. S. Balfour, and D. O. Edwards, Interface between superfluid and solid4He,Phys. Rev. Lett. 45:31 (1980).

    Google Scholar 

  26. L. D. Landau,Collected Papers of L. D. Landau, D. ter Haar, ed. (Oxford University Press, New York, 1965).

    Google Scholar 

  27. J. S. Langer, Instabilities and pattern formation in crystal growth,Rev. Mod. Phys. 52:1–28 (1980).

    Google Scholar 

  28. P. S. de Laplace,Theory of Capillary Attraction, Supplement to Vol. X ofCelestial Mechanics, translated by N. Bowditch (Chelsea Publishing Co., New York, 1966).

    Google Scholar 

  29. H. J. Leamy and G. H. Gilmer, The equilibrium properties of crystal surface steps,J. Crystal Growth 24/25:499–502 (1974).

    Google Scholar 

  30. E. Lieb, Thomas Fermi and related theories of atoms and molecules,Rev. Mod. Phys. 53:603–641 (1981).

    Google Scholar 

  31. L. Michel, Symmetry defects and broken symmetry configurations, hidden symmetry,Rev. Mod. Phys. 52:617–653 (1980).

    Google Scholar 

  32. M. R. Moldover and J. W. Cahn, An interface phase transition: Complete to partial wetting,Science 207:1073–1075 (1980).

    Google Scholar 

  33. C. B. Morrey, Multiple integrals in the calculus of variations (Springer, Berlin, 1966).

    Google Scholar 

  34. R. Pandit, M. Schick, and M. Wortis, Systematics of multilayer absorption phenomena on attractive substrates,Phys. Rev. B 26:5112 (1982).

    Google Scholar 

  35. D. W. Pohl and W. I. Goldburg, Wetting transition in lutidine-water mixtures,Phys. Rev. Lett. 48:1111–1114 (1982).

    Google Scholar 

  36. M. Reed and B. Simon,Functional Analysis, second ed. (Academic Press, New York, 1980).

    Google Scholar 

  37. R. T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, New Jersey, 1970).

    Google Scholar 

  38. C. Rottman and M. Wortis, Exact equilibrium crystal shapes at nonzero temperature in two dimensions,Phys. Rev., B 24:6274 (1981).

    Google Scholar 

  39. H. Sato and S. Shinozaki, Interfacial energy as a factor in controlling epitaxial behavior,Surf. Sci. 22:229–252 (1970).

    Google Scholar 

  40. J. E. Taylor, Boundary regularity for solutions to various capillarity and free boundary problems,Comm. Partial Diff. Eq. 2(4), 323–357 (1977).

    Google Scholar 

  41. J. E. Taylor, Crystalline variational problems,Bulletin AMS 84:568–588 (1978).

    Google Scholar 

  42. J. E. Taylor, Existence and structure of solutions to a class of nonelliptic variational problems,Symp. Mathematica 14:499–508 (1974).

    Google Scholar 

  43. H. van Beijeren, Exactly solvable model for the roughening transition of a crystal surface,Phys. Rev. Lett. 38:993–996 (1977).

    Google Scholar 

  44. J. D. Weeks and G. H. Gilmer, Dynamics of crystal growth,Adv. Chem. Phys. 40:157–228 (1979).

    Google Scholar 

  45. H. C. Wente, The symmetry of sessile and pendant drops,Pacific J. Math. 88:307–397 (1980).

    Google Scholar 

  46. H. C. Wente, The stability of the axially symmetric pendant drop,Pac. J. Math. 88:421–470 (1980).

    Google Scholar 

  47. W. L. Winterbottom, Equilibrium shape of a small particle in contact with a foreign substrate,Act. Met. 15:303–310 (1967).

    Google Scholar 

  48. G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und der Auflosung der Krystalflachen,Z. Krisallogr. Mineralogie 34:449 (1901).

    Google Scholar 

  49. R. K. P. Zia and J. Avron, Total surface energy and equilibrium shapes: Exact results for thed=2 Ising model,Phys. Rev. B 25:2042–2045 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NSF grants Nos. MCS 81-19974, MCS 80-0358302, and the Virginia Tech. Educational Foundation.

Alexander von Humboldt Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avron, J.E., Taylor, J.E. & Zia, R.K.P. Equilibrium shapes of crystals in a gravitational field: Crystals on a table. J Stat Phys 33, 493–522 (1983). https://doi.org/10.1007/BF01018830

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01018830

Key words

Navigation