Skip to main content
Log in

Mechanisms of electroless metal plating. III. Mixed potential theory and the interdependence of partial reactions

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electroless plating reactions are classified according to four overall reaction schemes in which each partial reaction is either under diffusion control or electrochemical control. The theory of a technique based on the observation of the mixed potential as a function of agitation, concentration of the reducing agent and concentration of metal ions is presented. Using this technique it is shown that in electroless copper plating the copper deposition reaction is diffusion-controlled while the formaldehyde decomposition reaction is activation-controlled. Values of the kinetic and mechanistic parameters for the partial reactions obtained by this method and by other electrochemical methods indicate that the two partial reactions are not independent of each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Tafel slope intercept

A :

electrode area

b M :

Tafel slope for cathodic partial reaction

b R :

Tafel slope for anodic partial reaction

B′ M :

diffusion parameter for CuEDTA2− complex

\(B_{O_2 }^\prime \) :

diffusion parameter for dissolved oxygen

B′ R :

diffusion parameter for HCHO

C M :

bulk concentration of copper ions

\(C_{O_2 }^\infty \) :

bulk concentration of dissolved oxygen

C aR :

surface concentration of HCHO

C R :

bulk concentration of HCHO

D R :

diffusion coefficient of HCHO

E :

electrode potential

E M :

thermodynamic reversible potential for the metal deposition reaction

E 0M :

standard electrode potential for copper deposition

E MP :

mixed potential

E R :

thermodynamic reversible potential for reducing agent reaction

E 0R :

standard electrode potential for HCHO

F :

Faraday constant

i M :

current density for metal deposition

i′ M :

total cathodic current density

i kM :

kinetic controlled current density for metal deposition

i 0M :

exchange current density for metal deposition

i DM :

diffusion-limited current density for metal deposition

i D′M :

diffusion-limited current density for total cathodic reactions

\(i_{O_2 } \) :

current density for oxygen reduction

i plat :

plating current density

i R :

current density for HCHO oxidation

i 0R :

exchange current density for HCHO oxidation

i DR :

diffusion-limited current density for HCHO oxidation

n M :

number of electrons transferred in metal deposition reaction

n R :

number of electrons transferred in the HCHO oxidation reaction

R :

gas constant

T :

absolute temperature

ν:

stoichiometric number

αM :

transfer coefficient for metal deposition

αR :

transfer coefficient for HCHO oxidation

βM :

symmetry factor

γ:

number of steps prior to rate determining step

ηM :

overpotential for metal deposition

ηR :

overpotential for HCHO oxidation

v :

kinematic viscosity

ω:

rotation rate of electrode

References

  1. C. Wagner and W. Traud,Z. Electrochem. 44 (1938) 391.

    Google Scholar 

  2. J. V. Petrocelli,J. Electrochem. Soc. 112 (1965) 124.

    Google Scholar 

  3. E. J. Kelly,112 (1965) 124.

    Google Scholar 

  4. M. Paunovic,Plating 51 (1968) 1161.

    Google Scholar 

  5. S. M. El-Raghy and A. A. Aho-Solama,J. Electrochem. Soc. 126 (1979) 171.

    Google Scholar 

  6. F. M. Donahue and F. L. Shippey,Plating 60 (1973) 135.

    Google Scholar 

  7. F. M. Donahue and C. U. Yu,Electrochim. Acta 15 (1970) 237.

    Google Scholar 

  8. A. Molenaar, M. F. E. Holdrinet and L. K. H. van Beek,Plating 61 (1974) 238.

    Google Scholar 

  9. F. M. Donahue,J. Electrochem. Soc. 119 (1972) 72.

    Google Scholar 

  10. T. N. Andersen, M. H. Ghandehari and M. Ejuning,122 (1975) 1580.

    Google Scholar 

  11. P. Bindra and J. Tweedie,130 (1983) 1112.

    Google Scholar 

  12. F. M. Donahue,127 (1980) 51.

    Google Scholar 

  13. V. G. Levich, ‘Physicochemical Hydrodynamics’, Prentice Hall, Englewood Cliffs, NJ (1962).

    Google Scholar 

  14. A. C. Riddiford, ‘Advances in Electrochemistry and Electrochemical Engineering’, Vol. 4, Interscience, New York (1966).

    Google Scholar 

  15. A. C. Makrides,J. Electrochem. Soc. 107 (1960) 869.

    Google Scholar 

  16. D. S. Gnanamuthu and J. V. Petrocelli,114 (1967) 1036.

    Google Scholar 

  17. D. Barnes and P. Zuman,J. Electroanal. Chem. 46 (1973) 323.

    Google Scholar 

  18. D. Manousek and J. Volke,43 (1973) 365.

    Google Scholar 

  19. W. Vielstich, ‘Fuel Cells’, (translated by D. J. G. Ives), Wiley-Interscience, London (1970).

    Google Scholar 

  20. R. M. Lukes,Plating 51 (1964) 1066.

    Google Scholar 

  21. K. J. Vetter, ‘Electrochemical Kinetics’, Academic Press (1967).

  22. J. O'M. Bockris and A. K. N. Reddy, ‘Modern Electrochemistry’, Vol. 2, MacDonald and Co. Ltd., London (1970).

    Google Scholar 

  23. U. Bertocci and D. R. Turner, ‘Encyclopedia of Electrochemistry of the Elements’, Vol. 2, Marcel Dekker, New York (1974).

    Google Scholar 

  24. P. B. Bindra and J. Roldan,J. Electrochem. Soc. 132 (1985) 2581.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bindra, P., Roldan, J. Mechanisms of electroless metal plating. III. Mixed potential theory and the interdependence of partial reactions. J Appl Electrochem 17, 1254–1266 (1987). https://doi.org/10.1007/BF01023610

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023610

Keywords

Navigation