Skip to main content
Log in

An efficient non-hydrostatic forecast model

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

A semi-implicit non-hydrostatic mesoscale forescasting model, which is used operationally in the United Kingdom Meteorological Office, has been reformulated using two time levels and semi-Lagrangian advection so as to permit longer timesteps. The boundaries are found to be an important influence on the model's stability and two methods of suppressing wave reflection are described with the aid of a one-dimensional experiment. The model's responses to two dimensional flow over a ridge and to three-dimensional flow over an isolated mountain are then demonstrated. The reformulated model is more efficient than the original provided a timestep at least twice as long can be used. It is also superior both in having minimal damping (except at the boundaries), and in the accuracy of the advection scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballard, S. P., Golding, B. W., Smith, R. N. B., 1991: Mesoscale model experimental forecasts of the Haar of North East Scotland.Mon. Wea. Rev.,119, 2107–2123.

    Google Scholar 

  • Bates, J. R., 1984: An efficient semi-Lagrangian and alternating directions implicit method for integrating the shallow water equations.Mon. Wea. Rev.,112, 2033–2047.

    Google Scholar 

  • Bourke, W., McAvaney, B., Puri, K., Thurling, R., 1977: Global modeling of atmospheric flow by spectral methods.Methods in Comp. Phys.,17, 267–324.

    Google Scholar 

  • Carpenter, K. M., 1979: An experimental forecast using a non-hydrostatic mesoscale model.Quart. J. Roy. Meteor. Soc.,105, 629–655.

    Google Scholar 

  • Clark, T. L., Peltier, W. R., 1977: On the evolution and stability of finite amplitude mountain waves.J. Atmos. Sci.,34, 1715–1730.

    Google Scholar 

  • Cotton, W. R., Tripoli, G. J., 1978: Cumulus convection in shear flow-Three dimensional numerical experiments.J. Atmos. Sci.,35, 1503–1521.

    Google Scholar 

  • Cox, G. P., 1988: Modelling precipitation in frontal rain-bands.Quart. J. Roy. Meteor. Soc.,114, 115–127.

    Google Scholar 

  • Cullen, M. J. P., 1990: A test of a semi-implicit integration technique for a fully compressible non-hydrostatic model.Quart. J. Roy. Meteor. Soc.,116, 1253–1258.

    Google Scholar 

  • Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models.Quart. J. Roy. Meteor. Soc.,102, 405–418.

    Google Scholar 

  • Gjevik, B., Marthinsen, T., 1978: Three dimensional lee wave pattern.Quart. J. Roy. Meteor. Soc.,104, 947–957.

    Google Scholar 

  • Golding, B. W., 1990: The meteorological office mesoscale model.Meteorol. Mag.,119, 81–96.

    Google Scholar 

  • Hess, G. D., 1990: Numerical simulation of the August 1986 heavy rainfall event in the Sydney area.J. Geophys. Res.,95D3, 2037–2082.

    Google Scholar 

  • Klemp, J. B., Durran, D. R., 1982: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models.Mon. Wea. Rev.,111, 430–444.

    Google Scholar 

  • Klemp, J. B., Lilly, D. K., 1978: Numerical simulation of hydrostatic mountain waves.J. Atmos. Sci.,35, 78–107.

    Google Scholar 

  • Kelmp, J. B., Wilhelmson, R. B., 1978: The simulation of three dimensional convective storm dynamics.J. Atmos. Sci.,35, 1070–1096.

    Google Scholar 

  • Leslie, L. M., Mills, G. A., Logan, L. W., Gauntlett, D. J., Kelly, G. A., McGregor, J. L., Manton, M. J., Sardie, J. M., 1985: A high resolution primitive equations model for operations and research.Aust. Meteorol. Mag.,33, 11–36.

    Google Scholar 

  • Marthinsen, T., 1980: Three dimensional lee waves.Quart. J. Roy. Meteor. Soc.,106, 569–580.

    Google Scholar 

  • McDonald, A., Bates, J. R., 1987: Improving the estimate of the departure point position in a two time level semi-Lagrangian and semi-implicit scheme.Mon. Wea. Rev.,115, 737–739.

    Google Scholar 

  • Mills, G. A., Seaman, R. S., 1990: The BMRC limited area data assimilation system.Mon. Wea. Rev.,118, 1217–1237.

    Google Scholar 

  • Miyakoda, K., Rosati, A., 1977: One-way nested grid models: The interface conditions and numerical accuracy.Mon. Wea. Rev.,105, 1092–1107.

    Google Scholar 

  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows.J. Comp. Phys.,21, 251–269.

    Google Scholar 

  • Peltier, W. R., Clarke, T. L., 1983: Nonlinear mountain waves in two and three spatial dimensions.Quart. J. Roy. Meteor. Soc.,109, 527–548.

    Google Scholar 

  • Redelsperger, J. L., Sommeria, G., 1986: Three-dimensional simulation of a convective storm: sensitivity studies on subgrid parameterization and spatial resolution.J. Atmos. Sci.,43, 2619–2635.

    Google Scholar 

  • Roach, W. T., Slingo, A., 1979: A high resolution infrared radiative transfer scheme to study the interaction of radiation with cloud.Quart. J. Roy. Meteor. Soc.,105, 603–614.

    Google Scholar 

  • Robert, A., 1969: The integration of a spectral model of the atmosphere by the implicit method. In: Proc. WMO/IUGG Symposium on Numerical Weather Prediction. Tokyo:Japan Met. Agency,VII, 19–24.

    Google Scholar 

  • Robert, A., 1981: A stable numerical integration scheme for the primitive meteorological equations.Atmos.-Ocean.,19–1, 35–46.

    Google Scholar 

  • Robert, A., 1992: Bubble convection experiments with a semi-implicit formulation of the Euler equations.J. Atmos. Soc. (To appear).

  • Robert, A., Yee, T. L., Ritchie, H., 1985: A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models.Mon. Wea. Rev.,113, 388–394.

    Google Scholar 

  • Rutledge, S. A., Hobbs, P. V., 1983: The mesoscale and microscale structure and organisation of clouds and precipitation in midlatitude cyclones VIII: A model for the seeder-feeder process in warm frontal rainbands.J. Atmos. Sci.,40, 1185–1206.

    Google Scholar 

  • Rutledge, S. A., Hobbs, P. V., 1984: The mesoscale and microscale structure and organisation of clouds and precipitation in midlatitude cyclones XII: A diagnostic modelling study of precipitation development in narrow cold frontal rainbands.J. Atmos. Sci.,41, 2949–2972.

    Google Scholar 

  • Smith, R. B., 1979: The influence of mountains on the atmosphere.Adv. Geophys.,21, 87–226.

    Google Scholar 

  • Somieski, F., 1988: Mesoscale model parameterizations for radiation and turbulent fluxes at the lower boundary. DFVLR-FB-88-48.

  • Staniforth, A., Cote, J., 1991: Semi-Lagrangian integration schemes for atmospheric models—A review.Mon. Wea. Rev.,119, 2206–2223.

    Google Scholar 

  • Strang, G., 1969: On the construction and comparison of difference schemes. SIAMJ. Num. Anal.,5, 506–517.

    Google Scholar 

  • Tanguay, M., Robert, A., Laprise, R., 1990: A semi-implicit semi-Lagrangian fully compressible regional forecast model.Mon. Wea. Rev.,118, 1970–1980.

    Google Scholar 

  • Tapp, M. C., White, P. W., 1976: A non-hydrostatic mesoscale model.Quart. J. Roy. Meteor. Soc.,102, 277–296.

    Google Scholar 

  • Temperton, C., Staniforth, A., 1987: An efficient two time level semi-Lagrangian semi-implicit scheme.Quart. J. Roy. Meteor. Soc.,113, 1024–1039.

    Google Scholar 

  • Tripoli, G. J., Cotton, W. R., 1982: The Colorado State University three-dimensional cloud/mesoscale model-1982. Part 1: General theoretical framework and sensivity experiments.J. Rech. Atmos.,16, 185–219.

    Google Scholar 

  • Williamson, D. L., 1990: Semi-Lagrangian moisture transport in the NMC spectral model.Tellus,42A, 413–428.

    Google Scholar 

  • Williamson, D. L., Rasch, P. J., 1989: Two dimensional semi-Lagrangian transport with shape preserving interpolation.Mon. Wea. Rev.,117, 102–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golding, B.W. An efficient non-hydrostatic forecast model. Meteorl. Atmos. Phys. 50, 89–103 (1992). https://doi.org/10.1007/BF01025507

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025507

Keywords

Navigation