Skip to main content
Log in

Development and structure of a maritime continent thunderstorm

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

The evaluation of a maritime continent thunderstorm complex (Hector) occurring over Bathurst and Melville Islands north of Darwin, Australia (12° S, 131° E) is investigated primarily using Doppler radar data. Thunderstorm formation follows the development of sea breeze circulations and a period of shallow non-precipitating convection. Evidence exists for initiation of long-lived and organised convection on the sea breeze fronts, although short-lived, scattered convection is apparent earlier in the day. Merging of the convective systems is observed in regions of enhanced low-level convergence related to sea breeze circulations. The merged convective complex is initially aligned in an almost east-west direction consistent with the low-level forcing. The merged complex results in rapid vertical development with updraughts reaching 40 m s and echo tops reaching 20 km height. Maximum precipitation production occurs during this merger phase. On the perimeter of the merged convective complex, evidence exists for front-to-rear updraughts sloped over lower-level downdraughts with rear-to-front relative flow and forward propagating cold pools. The mature phase is dominated by this convection and the complex re-orientates in the prevailing easterly vertical shear to an approximate north-south direction, then moves westward off the islands with the classic multicellular squall-like structure.

The one-dimensional cloud model of Ferrier and Houze (1989) used with a four class ice formulation reproduced the cloud top height, updraught structure and echo profile very well. To test the importance of ice physics upon thunderstorm development, several sensitivity tests were made removing the effects of the ice phase. All of these model clouds reached nearly 20 km, although simulations without the effects of ice had updraughts reduced from about 40 m s−1 to 30 m s−1. The simulated convection was more sensitive to changes in environmental conditions and parameterised cloud dynamics. The strong intensity of the convection was largely accounted for by increasing equivalent potential temperatures due to diurnal heating of the surface layer. The vertical velocity and radar structure of the island thunderstorm has more similarity with continental rather than oceanic convection. Maximum vertical velocities, in particular are almost an order of magnitude greater than typical of oceanic convection. With the intense updraughts, even in the low shear environment, there is evidence for mesoscale circulations within the convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atlas, D., Srivastava, R. C., Sekhon, R. S., 1973: Doppler radar characteristics of precipitation at vertical incidence.Rev. Geophys. Space Phys.,2, 1–35.

    Google Scholar 

  • Balaji, V., Clark, T. L., 1988: Scale selection in locally forced convective fields and the initiation of deep cumulus.J. Atmos. Sci.,45, 3188–3211.

    Google Scholar 

  • Banta, R., Hanson, K. R., 1987: Sensitivity studies on the continentality of a numerically simulated cumulonimbus.J. Climate Appl. Meteor.,26, 275–286.

    Google Scholar 

  • Barnes, G. M., Sieckman, K., 1984: The environment of fast-and slow-moving tropical mesoscale convective cloud lines.Mon. Wea. Rev.,112, 1782–1794.

    Google Scholar 

  • Bluestein, H. B., Jain, M. H., 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the Spring.J. Atmos. Sci.,42, 1711–1732.

    Google Scholar 

  • Bluestein, H. B., McCaul, E. W. Jr., Byrd, G. P., Woodall, G. P., 1988. Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas storm of 7 May 1986.Mon. Wea. Rev.,116, 1790–1804.

    Google Scholar 

  • Chisholm, A. J., 1973: Radar case studies and airflow-models. Part I, Alberta hailstorms.Meteor. Monogr.,36, 1–36.

    Google Scholar 

  • Clark, T. L., 1973: Numerical modelling of the dynamics and microphysics of warm cumulus convection.J. Atmos. Sci.,30, 857–878.

    Google Scholar 

  • Colby, F. P., Jr., 1983: Convective inhibition as a predictor of the outbreak in convection in AVE-SESAME II. Preprints,13 th Conf. on Severe Local Storms, Tulsa,Amer. Meteor. Soc., 324–327.

  • Cotton, W. R., Stephens, M. A., Nehkorn, T., Tripoli, G. J., 1982: The Colorado State University three-dimensional cloud/mesoscale model—1982. Part II: An ice phase parameterization.J. Rech. Atmos.,16, 295–320.

    Google Scholar 

  • Donaldson, R. J. Jr., 1961: Radar reflectivity profiles in thunderstorms.J. Meteor.,18, 292–305.

    Google Scholar 

  • Ebert, E. E., Holland, G. J., 1992: Observations of record cloud-top temperatures in tropical cyclone Hilda (1990).Mon. Wea. Rev.,120, 2240–2251.

    Google Scholar 

  • Ferrier, B. S., Houze, R. A. Jr., 1989: One dimensional time-dependent modelling of GATE cumulonimbus convection.J. Atmos. Sci.,46, 330–352.

    Google Scholar 

  • Ferrier, B. S., 1993: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description.J. Atmos. Sci. (in Press).

  • Fletcher, N. H., 1962:The Physics of Rainclouds. Cambridge: Cambridge University Press, 386 pp.

    Google Scholar 

  • Golding, B. W., 1993: A numerical investigation of tropical island thunderstorms.Mon. Wea. Rev.,121, 1417–1433.

    Google Scholar 

  • Hallett, J., Mossop, S. C., 1974: Production of secondary ice particles during the rime process.Nature,249, 26–28.

    Google Scholar 

  • Hallett, J., Sax, R. I., Lamb, D., Ramachandra Murty, A. S., 1978: Aircraft measurements of ice in Florida cumuli.Quart. J. Roy. Meteor. Soc.,104, 631–651.

    Google Scholar 

  • Hallett, J., Keenan, T. D., Williams, E., 1990: Penetrative velocities of high level tropical convective clouds.Amer. Geophy. Union Fall Meeting, December 3–7, San Fransisco, CA.

  • Holland, G. J., Keenan, T. D., 1993: Atmospheric response to island convection.Quart. J. Roy. Meteor. Soc. (Submitted).

  • Horel, J. D., Wallace, J. M., 1981: Planetary scale atmospheric phenomena associated with the southern oscillation.Mon. Wea. Rev.,109, 813–829.

    Google Scholar 

  • Houze, R. A. Jr., Geotis, S. G., Marks, F. D., West, A. K., 1981: Winter Monsoon convection in the vicinity of North Borneo. Part I: Structure and time variation of the clouds and precipitation.Mon. Wea. Rev.,108, 1595–1614.

    Google Scholar 

  • Illingworth, A. J., Goddard, J. W. F., Cherry, S. M., 1987: Polarization radar studies of precipitation development in convective storms.Quart. J. Roy. Soc.,113, 469–489.

    Google Scholar 

  • Janowaik, J. E., Krueger, A. F., Arkin, P. F., 1985: Atlas of outgoing longwave radiation derived from NOAA satellite data. NOAA Atlas No. 6 U.S. Dept. of Commerce, Washington, D.C.

    Google Scholar 

  • Jorgensen, D. P., Zipser, E. J., LeMone, M. A., 1985: Vertical motions in intense hurricanes.J. Atmos. Sci.,42, 839–856.

    Google Scholar 

  • Keenan, T. D., Holland, G. J., Manton, M. J., Simpson, J., 1988: TRMM ground truth in a monsoon environment: Darwin, Australia.Aust. Meteor. Mag.,36, 81–90.

    Google Scholar 

  • Keenan, T. D., Morton, B., Manton, M. J., Holland, G. J., 1989: The Island Thunderstorm Experiment(ITEX)-A study of tropical maritime continent thunderstorms.Bull. Amer. Meteor. Soc.,70, 152–159.

    Google Scholar 

  • Keenan, T. D., Morton, B. R., Shu Xu, Zhang, Nyguen, K., 1990: A climatology of tropical island thunderstorms over Bathurst and Melville Islands near Darwin, Australia.Quart. J. Roy. Meteor. Soc.,116, 1153–1172.

    Google Scholar 

  • Keenan, T. D., Potts, R., Wilson, J., 1991: The Darwin area forecasting experiment: Description and preliminary results.Aust. Meteor. Mag.,39, 211–222.

    Google Scholar 

  • Keenan, T. D., Carbone, R. E., 1992: A preliminary morphology of precipitation systems in tropical northern Australia.Quart. J. Roy. Meteor. Soc.,118, 283–326.

    Google Scholar 

  • Keller, V. W., Sax, R. J., 1981: Microphysical development of a pulsating cumulus tower: A case study.Quart. J. Roy. Meteor. Soc.,107, 679–697.

    Google Scholar 

  • Kingsmill, D. E., Wakimoto, R. M., 1991: Kinematic, dynamic and thermodynamic analysis of a weakly sheared severe thunderstorm over northern Alabama.Mon. Wea. Rev.,119, 262–297.

    Google Scholar 

  • Klemp, J. B., Rotunno, R., 1983: A study of a tornadic region within a supercell thunderstorm.J. Atmos. Sci.,40, 359–377.

    Google Scholar 

  • Knupp, K. R., 1987: Downdrafts within high plains cumulonimbi. Part I: General kinematic structure.J. Atmos. Sci.,44, 987–1008.

    Google Scholar 

  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments.J. Atmos. Sci.,48, 1160–1189.

    Google Scholar 

  • Krishnamurti, T. N., Kanamitsu, M., Koss, W. J., Lee, J. D., 1973: Tropical east-west circulations during the northern winter.J. Atmos. Sci.,30, 780–787.

    Google Scholar 

  • Kuettner, J. P., 1971: Cloud bands in the earth's atmosphere: Observations and theory.Tellus,23, 404–425.

    Google Scholar 

  • Lau, K. M., Chang, C. P., Chan, P. H., 1983: Short-term planetary-scale interactions over the tropics and midlatitudes. Part II: Winter-MONEX period.Mon. Wea. Rev.,111, 1372–1388.

    Google Scholar 

  • LeMone, M. A., Zipser, E. J., 1980: Cumulonimbus vertical events in GATE. Part I: Diameter, Intensity and Mass Flux.J. Atmos. Sci.,37, 2444–2457.

    Google Scholar 

  • Lin, Y.-L., Farley, R. D., Orville, H. D., 1983: Bulk parameterization of the snow field in a cloud model.J. Climate. Appl. Meteor.,22, 1065–1092.

    Google Scholar 

  • Lord, S. J., Willoughby, H. E., Piotrowicz, J. H., 1984: Role of a parameterised ice-phase microphysics in an axisymmetric nonhydrostatic tropical cyclone model.J. Atmos. Sci.,41, 2836–2848.

    Google Scholar 

  • Malkus, J. S.: 1954: Some results of a trade-cumulus cloud investigation.J. Meteor.,11, 220–237.

    Google Scholar 

  • Malkus, J. S., 1955: The effects of a large island upon the trade-wind airstream.Quart. J. Roy. Meteor. Soc.,81, 538–550.

    Google Scholar 

  • Malkus, J. S., 1960: Recent developments in studies of penetrative convection and its application to hurricane cumulonimbus towers. In: Anderson, C. E. (ed.)Cumulus Dynamics, pp. 65–84, New York, Pergamon Press.

    Google Scholar 

  • Malkus, J. S., Scorer, R. S., 1955: The erosion of cumulus towers.J. Meteor.,12, 43–57.

    Google Scholar 

  • Manton, M. J., Cotton, W. R., 1977: Formulation of approximate equations for modelling moist deep convection on the mesoscale. Atmos. Sci. Paper No. 266, 62 pp. [Available from Colorado State University, Dept. of Atmospheric Science, Ft. Collins, CO 80523].

  • Miller, L. J., Tuttle, J. D., Knight, C. K., 1988: Airflow and hail growth in a severe northern High Plains supercell.J. Atmos. Sci.,45, 736–762.

    Google Scholar 

  • Mohr, C. G., Miller, J. J., Vaughan, R. L., 1981: An interactive software package for rectification of radar data to three-dimensional cartesian coordinates. Preprints,20 th Conf. on Radar Meteorology, Boston, MA. Amer. Meteor. Soc., 690–695.

  • Moncrieff, M. W., Green, J. S. A., 1972: The propagation and transfer properties of steady convective overturning in shear.Quart. J. Roy. Meteor. Soc.,102, 373–394.

    Google Scholar 

  • Mossop, S. C., 1985. Secondary ice particle production during rime growth: the effect of drop size distribution and rimer velocity.Quart. J. Roy. Meteor. Soc.,102, 45–57.

    Google Scholar 

  • Nicholls, M. E., Pielke, R. A., Cotton, W. R., 1991. A two-dimensional numerical investigation of the interaction between sea breezes and deep convection over the Florida Peninsula.Mon. Wea. Rev.,119, 298–323.

    Google Scholar 

  • Oye, R., Carbone, R. E., 1981: Interactive Doppler editing software.20 th Conf. Radar Meteorology, Boston, MA. Amer. Meteor. Soc. 683–689.

  • Ramage, C. S., 1968: Role of a tropical “maritime continent” in the atmospheric circulation.Mon. Wea. Rev.,96, 365–370.

    Google Scholar 

  • Rasmusson, E. M., Arkin, P. A., 1985: Interannual climate variability associated with the El Niño/Southern Oscillation.Coupled Ocean-Atmosphere models. Amsterdam: Elsevier Science Publishers B.V.

    Google Scholar 

  • Riehl, H., 1979:Climate and Weather in the Tropics, London: Academic Press, 611 pp.

    Google Scholar 

  • Rotunno, R., 1981: On the evolution of thunderstorm rotation.Mon. Wea. Rev.,109, 577–586.

    Google Scholar 

  • Rotunno, R., Klemp, J. B., Weisman, M., 1988: A theory for strong long-lived squall lines.J. Atmos. Sci.,45, 463–485.

    Google Scholar 

  • Rutledge, S. A., Hobbs, P. V., 1984: The mesoscale structure and organisation of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modelling study of precipitation development in narrow cold-frontal rain bands.J. Atmos. Sci.,41, 2949–2972.

    Google Scholar 

  • Rutledge, S. A., 1991: Middle latitude and tropical mesoscale convective systems.Rev. Geophys. [Suppl].29, 88–97.

    Google Scholar 

  • Rutledge, S. A., Williams, E., Keenan, T. D., 1992: Studies of dynamics and electrification of deep convection and mesoscale clusters near Darwin, Australia.Bull. Amer. Meteor. Soc.,73, 3–16.

    Google Scholar 

  • Scorer, R. S., Ludlam, F. H., 1953: Bubble theory of convection.Quart. J. Roy. Soc.,79, 94–103.

    Google Scholar 

  • Simpson, J. S., 1983: Cumulus clouds; Interactions between laboratory experiments and observations as foundations for models. In: Lilly, D. K., Gal-Chen, T. (eds.)Mesoscale Meteorology-Theories Observations and Models Dordecht: Reidel Publishing Co., 399–412.

    Google Scholar 

  • Simpson, J. S., van Helvoirt, G., 1980: GATE cloud-subcloud interactions examined using a three-dimensional cumulus model.Contrib. Atmos. Phys.,53, 106–134.

    Google Scholar 

  • Simpson, J., Wescott, N. E., Clerman, R. J., Pielke, R. A., 1980: On Cumulus mergers.Arch. Meteor. Geophys. Biokl.,A29, 1–40.

    Google Scholar 

  • Simpson, J. S., McCumber, M., 1982: Three-dimensional simulations of cumulus congestus clouds on GATE day 261.J. Atmos. Sci.,39, 126–145.

    Google Scholar 

  • Simpson, J. S., Morton, B. R., McCumber, M., Penc, R., 1986: Observations and mechanisms of GATE waterspouts.J. Atmos. Sci.,43, 753–782.

    Google Scholar 

  • Simpson, J., Keenan, T., Ferrier, B., Simpson, R. H., Holland, G., 1993: Cumulus mergers in the maritime continent.Meteorol. Atmos. Phys.,51, 73–99.

    Google Scholar 

  • Skinner, T. L., 1990: A study of the sea-breeze over Melville and Bathurst Islands and its role in the development of island thunderstorms, Dissertation submitted in partial fulfilment of B.A. (Hon), Monash University, Clayton, Australia, 151 pp.

    Google Scholar 

  • Soong, S.-T., 1974: Numerical simulation of warm rain development in an axisymmetric cloud model.J. Atmos. Sci.,31, 1262–1285.

    Google Scholar 

  • Szoke, E. J., Zipser, E. J., Jorgensen, J. P., 1986: A radar study of convective cells in GATE. Part I: Vertical profiles statistics and comparison with hurricanes.J. Atmos. Sci.,43, 182–197.

    Google Scholar 

  • Szoke, E. J., Zipser, E. J., 1986: A radar study of convective cells in GATE. Part II: Life cycles of convective cells.J. Atmos. Sci.,43, 199–218.

    Google Scholar 

  • Tao, W.-K., Simpson, J., 1989: A further study of cumulus interactions and mergers: Three dimensional simulations with trajectory analyses.J. Atmos. Sci.,46, 2974–3004.

    Google Scholar 

  • Tuttle, J. D., Bringi, V. N., Orville, H. D., Kopp, F. J., 1989: Multiparameter radar study of a microburst: Comparison with model results.J. Atmos. Sci.,46, 601–620.

    Google Scholar 

  • Turpeinen, O., Yau, M. K., 1981: Comparison of results from a three-dimensional cloud model with statistics of radar echoes on day 261 of GATE.Mon. Wea. Rev.,109, 1495–1511.

    Google Scholar 

  • Wakimoto, R. M., Bringi, V. N., 1988: Operational detection of microbursts associated with intense convection: The 20 July storm during the MIST project.Mon. Wea. Rev.,116, 1521–1539.

    Google Scholar 

  • Weisman, M. L., Klemp, J. B., 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy.Mon. Wea. Rev.,116, 504–520.

    Google Scholar 

  • Williams, M., Houze, J. R. Jr., 1987: Satellite-observed characteristics to winter monsoon cloud clusters.Mon. Wea. Rev.,115, 505–519.

    Google Scholar 

  • Woodward, B., 1959: The motion in and around isolated thermals.Quart. J. Roy. Meteor. Soc.,95, 144–151.

    Google Scholar 

  • Zipser, E. J., LeMone, M. A., 1980: Cumulonimbus vertical velocity events in GATE: Part II: Synthesis and model core structure.J. Atmos. Sci.,37, 2458–2469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 17 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keenan, T.D., Ferrier, B. & Simpson, J. Development and structure of a maritime continent thunderstorm. Meteorl. Atmos. Phys. 53, 185–222 (1994). https://doi.org/10.1007/BF01029612

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029612

Keywords

Navigation